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Abstract. – OBJECTIVE: Anorexia nervosa 
(AN), a severe psychiatric disorder primarily af-
fecting adolescents and young adults, is char-
acterized by extreme dietary restriction and dis-
torted body image. While the psychological as-
pects of AN are well-documented, its intricate 
metabolic underpinnings remain less explored. 
We think that metabolomic analysis of hair sam-
ples emerges as a promising tool to unveil the 
complex physiological alterations in AN.
This study aims to comprehensively profile ami-
no acid concentrations in hair samples from 
AN patients and healthy controls. Additionally, 
it seeks to elucidate potential correlations be-
tween amino acid alterations and appetite dys-
regulation in AN, thereby shedding light on the 
physiological basis of this debilitating disorder.

PATIENTS AND METHODS: A total of 25 
AN patients and 25 age-matched healthy con-
trols were recruited for this study. Hair sam-
ples were collected, and metabolites were ex-
tracted and analyzed using high-resolution 
liquid chromatography-mass spectrometry. 
Clinical data and biochemical markers were 
also gathered to characterize participants’ de-
mographic and clinical profiles.

RESULTS: Metabolomic analysis revealed sig-
nificant alterations in amino acid concentrations 
in AN patients compared to healthy controls. No-
tably, deficiencies in essential amino acids (EAAs) 
and branched-chain amino acids (BCAAs) were 
observed, highlighting potential contributors to 
muscle wasting and appetite dysregulation. Fur-
ther analysis identified specific amino acids as ro-
bust biomarkers capable of distinguishing AN pa-
tients with high sensitivity and specificity.

CONCLUSIONS: This study unveils the com-
plex metabolic disturbances associated with AN 
and underscores the role of amino acid dysreg-
ulation in the disorder’s pathophysiology. The 
identified biomarkers hold promise for diagnostic 
screening and potential therapeutic interventions, 
opening avenues for personalized approaches in 
AN treatment. Ultimately, this research contrib-
utes to our understanding of chronic disorders 
through the lens of metabolomics and the che-
mosensory underpinnings of appetite regulation.
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Introduction

Anorexia nervosa (AN) is a debilitating 
psychiatric disorder characterized by extreme 
dietary restriction, distorted body image, and an 
intense fear of gaining weight1. The disorder pri-
marily affects adolescents and young adults, with 
a higher prevalence among females, and has a si-
gnificant impact on physical health, psychological 
well-being, and overall quality of life2. Despite 
its well-documented psychological aspects, AN 
is associated with complex physiological changes 
contributing to its etiology and maintenance3. 
The regulation of appetite and energy homeosta-
sis is intricate and involves the interplay of va-
rious neuroendocrine, metabolic, and behavioral 
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factors4,5. Metabolomic analysis, a powerful tool 
that examines the comprehensive profile of small 
molecule metabolites in biological samples, has 
emerged as a promising approach to unraveling 
the underlying metabolic alterations in AN6,7. 
This approach has been successfully employed 
in various fields, including clinical diagnostics, 
drug development, and nutrition research8. Me-
tabolomic analysis of biological samples, such 
as blood, urine, and hair, can offer insights into 
disease-specific metabolic perturbations and help 
uncover potential biomarkers for various disor-
ders9. The utilization of hair metabolomics offers a 
unique advantage in the study of AN10; hair meta-
bolomics captures long-term metabolic changes11. 
Indeed, hair strands grow at an average rate of 1 
cm per month, preserving metabolites over exten-
ded periods12. This temporal dimension is particu-
larly relevant for AN, a disorder characterized by 
chronic and persistent metabolic alterations13.

Recent advances in mass spectrometry and li-
quid chromatography have enabled high-throu-
ghput and high-resolution metabolomic analysis of 
hair samples11. By profiling the metabolites present 
in hair, researchers can gain insights into the long-
term biochemical processes associated with AN 
and potentially uncover novel metabolic pathways 
linked to the disorder14,15. These investigations 
have identified disturbances in lipid metabolism, 
amino acid metabolism, and energy production in 
AN patients16. Amino acids, as central components 
of protein synthesis and energy metabolism, play a 
pivotal role in maintaining overall health17. Their 
levels are tightly regulated by intricate metabolic 
pathways, and any disruptions can have profound 
effects on physiological processes18.

Recent research19 has proposed that indivi-
duals with Anorexia Nervosa (AN), may also 
experience alterations in their perception of 
chemosensory stimuli. These alterations change 
in the response of taste receptors and regulators 
of appetite to essential amino acids (EAAs) and 
branched-chain amino acids (BCAAs)20. 

Amino acids, as central players in this pa-
thway, serve as building blocks for proteins and 
enzymes, participate in neurotransmitter synthe-
sis, and contribute to energy production throu-
gh gluconeogenesis and the citric acid cycle21. 
Dysregulation of amino acid metabolism has 
been implicated in a range of metabolic disorders, 
including diabetes, obesity, and cardiovascular 
diseases22. Our study has two main objectives: 
firstly, to comprehensively profile the amino acid 
concentrations in hair samples from AN patients 

and healthy controls; and secondly, to elucidate 
potential correlations between amino acid al-
terations and appetite dysregulation in AN. By 
examining the metabolic profile of AN patients, 
we aim to identify specific amino acids that are 
significantly altered and understand how these 
perturbations contribute to the complex metabo-
lic milieu associated with the disorder. Under-
standing the link between amino acid metabolism 
and appetite regulation, as influenced by the 
chemosensory pathway, could provide valuable 
insights into the physiological basis of AN. By 
elucidating the metabolic pathways involved, we 
may uncover novel therapeutic targets for the tre-
atment of AN. Moreover, this study contributes 
to the broader field of metabolomics, shedding 
light on the potential of hair metabolomics as a 
tool to investigate complex and chronic disorders 
with a deeper appreciation of the chemosensory 
underpinnings of appetite regulation.

Chemosensory Function 
Chemosensory signals provide us with mul-

tiple cues during social interactions23. Chemo-
sensory alterations can have effects on response 
to starvation, indeed individuals with anorexia 
nervosa (AN) exhibit degrees of chemosensory 
dysfunction19. Studies24 on animals in which the 
availability of suitable food is limited show EAAs 
regulate food intake. This response is triggered by 
the detection of nutrients within a brain region, the 
anterior piriform cortex (APC)25-27. When meals 
with low essential amino-acid content are con-
sumed, their concentrations decrease in plasma 
and brain28. As the concentration of intracellular 
EAAs decreases, the corresponding transfer RNA 
(tRNA) becomes deacylated29. Subsequently, the 
enzyme general control nonderepressible kina-
se 2 (GCN2) phosphorylates eukaryotic initiation 
factor 2 (eIF2), resulting in a slowdown of protein 
synthesis. This favors the translation of mRNA, 
regulating gene expression30,31. This regulatory 
process takes longer than the rapid decrease in 
protein synthesis. Following studies24 on mice, 
both APC and GCN2 have been identified as 
EAA chemosensors. APC exhibits sensory fun-
ction when EAA levels are depleted32, with GCN2 
playing a pivotal role by detecting meals lacking 
in EAA, binding to deacylated tRNA, and pho-
sphorylating eIF2, consequently impairing protein 
synthesis33. Numerous studies24,34 highlight that 
the reduced food intake of EAAs involves me-
chanisms in both the hypothalamus and the APC, 
and research on mice showed a direct connection 
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between these two regions. The hypothalamus 
contains appetite regulators, like neuropeptide Y 
(NPY)35. Starvation triggers an increase in ghrelin, 
the hunger-stimulating hormone, which activates 
NPY36. Recent research37 involved subjecting mice 
to a valine-deficient diet, resulting in significant 
reductions in food intake and body weight. When a 
diet rich in valine is reintroduced, normal food in-
take levels return. This suggests that the taste of a 
valine-deficient diet might deter mice from consu-
ming an EAA-deficient diet37. Similar results were 
observed in pigs38, a valine-deficient diet reduced 
food intake, and this effect was enhanced when 
an excessive dose of leucine was administered. 
This could be attributed to the adverse effects of 
an imbalanced diet in branched-chain amino acids 
(BCAA), including valine, leucine, and isoleucine, 
leading to an anorexic response as a protective 
measure. This response occurs rapidly, likely to 
safeguard against neuronal pathologies resulting 
from the imbalance of these three BCAAs37. Re-
cent studies38 involving piglets and pigs have fo-
cused on optimizing body weight gain through the 
careful consideration of dietary valine-to-lysine 
ratios38. Additionally, research has explored diets 
centered around valine, isoleucine, and tryptophan 
to enhance growth performance, while also exa-
mining the potential negative impacts on growth 
associated with high concentrations of leucine and 
lysine39. Tryptophan, a precursor of serotonin, a 
neurotransmitter known for its role in regulating 
food intake, is a key player in these studies37,38. 
It is well-established that an imbalance in bran-
ched-chain amino acids (BCAA) can impede the 
brain’s ability to absorb tryptophan. This is due 
to the shared transporters between large neutral 
amino acids, such as tryptophan, and BCAA. 
Consequently, this imbalance can lead to reduced 
serotonin synthesis and, consequently, a decrease 
in food intake40. This finding could hold significant 
implications for individuals with eating disorders, 
including anorexia nervosa (AN)41. Therefore, the-
re is potential for further investigation into the 
amino acid pathways involved in these processes.

Metabolism Pathways of AA
Valine-deficient, threonine-deficient, and lysi-

ne-deficient diets cause mice to cease eating before 
reaching satiety42-44 rats can detect EAA-deficient 
diets within just 20-30 minutes, resulting in me-
al termination45. However, when exposed to an 
EAA-balanced diet after such an experience, their 
eating rate increases rapidly46. Hence, the bioche-
mical and neurological mechanisms responsible 

for detecting the presence of EAAs are remar-
kably swift24. The anterior piriform cortex (APC) 
has been identified as the brain region responsible 
for sensing EAAs. An EAA-imbalanced diet can 
rapidly reduce the levels of limiting amino acids 
in the APC by up to 56% in just 21 minutes28. A 
deficiency in EAAs leads to an accumulation of 
deacylated tRNA, resulting in such low levels of 
aminoacylated tRNA that new protein synthesis 
cannot be initiated29. This rapid mechanism of re-
cognizing EAA-deficient diets involves an essen-
tial enzyme in initiating new protein synthesis: 
the GCN2 enzyme, which phosphorylates eIF247. 
To further support the role of uncharged tRNA in 
detecting EAA-deficient diets, micro-injections 
of tRNA synthetase inhibitors (L-amino alcohols) 
were performed in the rat APC, resulting in re-
duced food intake after 20 minutes, simulating 
the effects of an EAA-deficient diet48. L-amino 
alcohols inhibit the synthesis of charged tRNA, 
favoring the synthesis of uncharged tRNA. The 
pyramidal cells of layer II in the APC serve as 
the output neurons. These cells are excitatory 
glutamatergic neurons regulated by GABAergic 
proteins49. In the absence of new protein syn-
thesis, inhibitory proteins critical for controlling 
the APC’s output circuit are quickly lost from 
the neural membrane50. Consequently, the APC 
cannot maintain its normal balance between sti-
mulatory and inhibitory neurons within the cir-
cuit. This leads to the liberation of excitatory 
glutamatergic neurons, which transmit signals to 
various brain areas involved in heightened motor 
activity and the rejection of EAA-deficient diets, 
resulting in reduced food intake and impaired 
growth34. Leucine activates the mammalian target 
of rapamycin complex 1 (mTORC1) signaling pa-
thway. This EAA stimulates ribosomal protein S6 
kinase (S6K1) and inhibits eukaryotic translation 
initiation factor 4E binding protein-1 (4EBP1)51. 
mTOR pathway regulation depends on leucine 
transport52, and it triggers protein synthesis and 
cell growth in the presence of EAA-balanced 
diets. As mentioned earlier, valine-deficient diets 
decrease food intake, and this effect is exacer-
bated when leucine intake is elevated26. High le-
vels of leucine cause excessive mTOR signaling, 
adversely affecting normal growth by reducing 
food intake53. However, since BCAAs (valine, 
leucine, isoleucine) share the same transporters, 
valine has been shown to hinder the transport of 
leucine across the blood-brain barrier, mitigating 
the excessive stimulation of mTOR39. Excessive 
leucine concentrations stimulate the catabolism 
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of all BCAAs (valine, leucine, isoleucine) and not 
just leucine39. A deficiency in these amino acids 
can alter the expression of growth hormone-insu-
lin-like growth factor-1 (GH-IGF-1). GH promotes 
the secretion of IGF-1, but this process appears to 
be contingent on the availability of valine, which 
can, in turn, inhibit the expression of IGF-1. Con-
sequently, as dietary leucine levels increase, food 
intake decreases54,55. However, adding valine and 
isoleucine to the diet can counteract the negative 
effects of high leucine concentrations39. It is cru-
cial, though, to maintain an appropriate balance 
and not overconsume leucine. Problems related 
to food intake and growth are associated with an 
unbalanced intake of valine, leucine, and isoleu-
cine. An EAA-balanced diet not only increases 
appetite but also enhances growth. Therefore, a 
direct signaling mechanism operates to maintain 
a balanced EAA profile in the diet52. The meta-
bolomic pathways of BCAA, leucine, valine, and 
isoleucine are represented in Figure 1.

Patients and Methods

Study Design and Participant Recruitment
The study was designed to investigate the 

metabolic alterations in anorexia nervosa (AN) 
through hair metabolomic analysis. A total of 25 
female AN patients and 25 age-matched healthy 
female controls were recruited from clinical cen-
ters in Italy. The AN patients met the DSM-V 
criteria for the disorder and were clinically dia-
gnosed by experienced psychiatrists specializing 

in eating disorders56. Healthy controls were se-
lected based on normal or underweight BMI 
and matched for age and gender. All participants 
provided written informed consent, and the study 
was conducted following ethical guidelines.

Clinical Data Collection
Clinical data were collected from both AN 

patients and healthy controls to characterize their 
demographic and clinical characteristics. The da-
ta included age, height, weight, BMI, presence 
of comorbidities, dietary behaviors, biochemi-
cal markers (glycemia, azotemia, creatinine, uric 
acid, sodium, potassium, calcium, magnesium, 
vitamin D3, cholesterol, triglycerides, thyroid-sti-
mulating hormone, glutamic-oxalacetic transa-
minase, glutamate pyruvate transaminase), and 
other relevant parameters.

Hair Sample Collection and Preparation
Hair samples were collected from participants 

by cutting a 1 cm diameter hair strand, star-
ting from the scalp base and extending 4-5 cm 
towards the tip. Each hair sample was cleaned, 
dried, and cut into 1 cm long pieces. These hair 
pieces were placed in glass vials and subjected 
to metabolite extraction11.

Metabolite Extraction
Metabolites were extracted from the hair 

samples using a multi-step procedure57. First, 
30 mg of hair pieces were immersed in 2 mL of 
methanol in glass vials. The vials were vortexed 
and incubated at 50°C for 1 hour. After cooling 

Figure 1. Representation of metabolic pathways of BCAA, leucine, valine, and isoleucine52.
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to room temperature, 2 mL of acetonitrile was 
added, and the vials were vortexed, followed by 
centrifugation at 13,000 g for 10 minutes. The 
organic layers were collected, combined, and 
dried under N2 gas. The remaining hair resi-
due was further processed by adding water and 
adjusting the pH to extract both acidic and basic 
metabolites. The obtained extracts were then 
reconstituted in H2O:CH3OH (70:30).

Liquid Chromatography-Mass 
Spectrometry (LC-MS) Analysis

Metabolomic analysis was performed using 
liquid chromatography (LC) coupled with mass 
spectrometry (MS)58. LC separation was carried 
out using a Phenomenex Jupiter C18 column (50 x 
2.1 mm, 5 µm particle size). Binary gradient elution 
with mobile phases consisting of water with 0.2% 
formic acid (mobile phase A) and acetonitrile (mo-
bile phase B) was employed. The LC system was 
coupled to an HCT Ultra high-capacity ion trap 
mass spectrometer equipped with an electrospray 
ionization (ESI) source. The mass spectrometer was 
operated in both positive and negative ion modes.

Data Analysis
The acquired mass spectrometry data were pro-

cessed and analyzed using the SANIST software 
suite, a tool specifically designed for metabolomic 
data analysis59. Statistical comparisons between 
AN patients and healthy controls were conducted 
using appropriate tests, and p-values were calcu-
lated to assess the significance of differences in 
amino acid concentrations (level of significance p 
< 0.05). Ratios of specific amino acids were cal-
culated to provide insights into their interplay and 
potential implications for appetite regulation.

Statistical Analysis 
In the context of our research, we employed 

multivariate analysis techniques, specifically 
Principal Component Analysis (PCA) and Re-
ceiver Operating Characteristic (ROC) analysis, 
with a significance threshold set at p-value < 0.05 

to evaluate the robustness of our findings. The 
ratio of patients with Anorexia Nervosa (AN) to 
healthy controls (CTR) was calculated based on 
amino acid concentrations in hair, expressed in 
nanograms per milligram. Additionally, Partial 
Least Squares Regression (PLSR) was utilized 
to identify biomarkers most strongly correla-
ted with anorexia nervosa by comparing patient 
and control data. Furthermore, we conducted 
ROC analysis on selected metabolites, presen-
ting maximum sensitivity and specificity values, 
associated cut-off points, and the area under the 
curve (AUC). These methodological approaches 
provided a comprehensive insight into signifi-
cant differences in metabolic profiles between 
individuals with anorexia nervosa and healthy 
controls, contributing to our understanding of the 
pathophysiology of this condition.

Results

The metabolomic analysis of hair samples from 
anorexic patients and healthy controls revealed si-
gnificant alterations in amino acid concentrations 
that exhibited a key role in the metabolic distur-
bances associated with anorexia nervosa (AN). 

Amino Acid Concentrations
Comparative analysis of amino acid concentra-

tions in hair samples showed distinct differences 
between AN patients and healthy controls (Table 
I). Notably, propionyl-carnitine and carnitine con-
centrations were significantly lower in anorexic 
patients compared to controls (p < 0.001), indi-
cating potential disruptions in lipid metabolism. 
Propionyl-carnitine and carnitine are involved in 
fatty acid metabolism, and their reduced levels 
may suggest altered lipid utilization in anorexic 
individuals. With the results obtained, it was 
possible to define the true metabolomic profiles 
of anorexic patients and of controls. Their com-
parison enables the discrimination of an affected 
person from a healthy one, as shown in Figure 2.

Table I. Amino Acid Concentrations in AN Patients and Healthy Controls. The ratio is between healthy controls (CTR), where 
we found the amino acid in nanograms on milligrams of hair, and anorexia nervosa patients (AN).

 Amino Acid	 Healthy Controls [Ng/Mg]	 AN Patients [Ng/Mg]	 Ratio CTR/AN	 p-value

Propionyl-Carnitine	 1.45784	 0.00788	 185.01	 1.76E-21
Carnitine	 0.08468	 0.00396	 21.38	 6.12E-14
Leucine/Isoleucine	 3.47448	 1.33596	 2.60	 6.08E-08
Valine	 9.04788	 3.92512	 2.30	 4.38E-07
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Leucine, isoleucine, and valine are bran-
ched-chain amino acids (BCAAs) crucial for mu-
scle maintenance and protein synthesis60. AN pa-
tients exhibited significantly lower concentrations 
of leucine (p < 0.001), isoleucine (p < 0.001), and 
valine (p < 0.001) compared to controls, suggesting 
compromised protein metabolism and muscle pre-
servation in AN. This observation aligns with the 
known catabolic state associated with anorexia61.

Alanine, tyrosine, and phenylalanine concen-
trations were found to be higher in AN patients 
than in controls. Alanine, a key player in carbohy-
drate metabolism62, may reflect increased protein 
degradation or altered metabolic pathways lin-
ked to protein catabolism in AN. Tyrosine and 
phenylalanine are precursors of neurotransmit-
ters63, and their elevated levels might contribute to 
the neurochemical imbalances often observed in 
AN. Figure 3 and Figure 4 illustrate the alterations 
in amino acid concentrations in anorexic patients 
compared to healthy controls. Figure 3 shows the 
different metabolomic profiles between patients 
and controls, while principal component analysis 
(Figure 4) shows that patients and controls cluste-
red in two distinct groups. Significant differences 
were observed for propionyl-carnitine, carnitine, 
leucine/isoleucine, valine, and other amino acids. 
These alterations point to potential metabolic di-
sruptions associated with anorexia nervosa. 

Essential Amino Acid Deficiency
An important finding is the significant deficien-

cy of essential amino acids (EAAs) in AN patients. 

The total concentration of EAAs was notably lower 
in AN patients (9.81 ng/mg) compared to healthy 
controls (18.72 ng/mg), resulting in a ratio of 1.91 
(CTR/AN). EAAs play a pivotal role in regulating 
appetite and food intake, and their deficiency in 
anorexic patients may contribute to appetite dysre-
gulation and compromised nutritional status64.

Tryptophan Ratio
The ratio of tryptophan to valine, leucine, and 

isoleucine was elevated in AN patients (0.27) com-
pared to controls (0.19), resulting in a ratio of 0.70 
(CTR/AN). This finding suggests that anorexic in-
dividuals preferentially transport tryptophan over 
these BCAAs due to their shared transporters40. 

The observed alterations in amino acid concen-
trations provide insights into the metabolic disrup-
tions in AN. The deficiencies in BCAAs and EA-
As point to the importance of these amino acids in 
maintaining muscle mass and regulating appetite. 

These findings have potential clinical impli-
cations for AN treatment. Restoring BCAA and 
EAA levels through targeted supplementation may 
support muscle preservation and address appetite 
dysregulation65. Further investigations are warran-
ted to explore the mechanisms underlying these 
metabolic alterations and to develop personalized 
interventions for AN patients66-68 (Table II).

Machine Learning Algorithms
We employed a machine learning model, spe-

cifically Partial Least Squares Regression69, to 
explore the potential utility of classification models 

Figure 2. Metabolomic profiles of anorexic patients and controls. 
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in the context of AN, as shown in Table III. In 
AN context, these features represent molecules, 
allowing us to identify those of utmost impor-
tance. To ensure the robustness of our findings, 
we conducted 100 iterations of analysis70. In each 
iteration, we randomly divided the samples into a 
training set (comprising 75% of the data) and a te-
sting set (comprising 25% of the data). The outco-
mes of this analysis were promising, with the 
model consistently achieving a high correlation 

of 98%. The top 10 molecules that consistently 
emerged as the most important throughout these 
iterations hold a particular interest in the context 
of AN. These molecules serve as potential mar-
kers, demonstrating their exceptional ability to 
distinguish between different groups within our 
dataset. However, it is important to note that whi-
le these molecules are effective classifiers within 
our dataset, further investigations are required to 
elucidate the nature of this variation.

Figure 3. Heat map to compare metabolomic profiles of patients and controls. Patients are shown in red, and controls are 
shown in light blue.
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Table II. ROC analysis of selected metabolites. The maximum sensitivity and specificity values and their correlated cut-off are 
shown. Then, we were able to calculate the area under the curve (AUC).

Molecules	 Cut-off	 Sensibility	 Specificity	 AUC

Propionyl-Carnitine	 0.5825	 1	 1	 1
Carnitine	 0.0255	 1	 1	 1
PGE2	 0.022	 1	 1	 1
PGE1	 0.007	 1	 1	 1
Arachidonamide	 1.7975	 1	 1	 1
Linoleamide	 1.5595	 1	 1	 1
Leucine/Isoleucine	 2.3875	 0.88	 1	 0.94
OEA	 1.308	 1	 0.84	 0.92
Valine	 7.3105	 0.88	 1	 0.94
LTB4	 0.475	 0.88	 1	 0.94
LTB5	 0.525	 1	 1	 1
LTA4	 0.149	 1	 1	 1
LTF4	 0.293	 1	 1	 1
PGI2	 0.0055	 1	 0.96	 0.98

Figure 4. Principal component analysis (PCA). Metabolic Alterations in Amino Acid Concentrations. Patients are shown in 
red, and controls are shown in light blue.
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Discussions

The present study was carried out to study 
metabolic alterations in anorexia nervosa (AN) 
through the analysis of amino acid concentrations 
in hair samples. The results provide valuable 
insights into the intricate biochemical changes 
associated with this complex and debilitating 
disorder. However, it is essential to consider the 
role of the chemosensory pathway in these meta-
bolic changes. This pathway plays a pivotal role 
in shaping eating behaviors and is influenced by 
various amino acids. The observed alterations 
in amino acid concentrations underscore the ex-
tent of metabolic disturbances in AN and other 
metabolic disorders71. The reduced levels of pro-
pionyl-carnitine and carnitine are of particular in-
terest, as they reflect potential disruptions in lipid 
metabolism72. These two molecules play a crucial 
role in fatty acid transportation into mitochondria 
for energy production73. The scarcity of pro-
pionyl-carnitine and carnitine in anorexic patien-
ts may suggest altered lipid utilization pathways, 
aligning with the energy conservation strategies 
often observed in individuals with AN74. The de-
creased concentrations of leucine, isoleucine, and 
valine in AN patients underscore the profound 
alterations in protein metabolism and muscle pre-
servation in AN75. Branched-chain amino acids 
(BCAAs) are vital for maintaining muscle mass, 
and their deficiency in AN may contribute to 
muscle wasting and catabolism76. The reduction 
of BCAAs is a noteworthy finding, as it provides 
a biochemical basis for the skeletal muscle loss 
commonly seen in AN patients77.

The elevated levels of alanine, tyrosine, and 
phenylalanine in AN patients indicate potential 
disturbances in amino acid metabolism78. Alani-
ne’s role in carbohydrate metabolism makes its 
increase in AN a plausible reflection of altered 
metabolic pathways associated with protein cata-
bolism62. Similarly, the elevation of tyrosine and 
phenylalanine aligns with their role as precursors 
for neurotransmitter synthesis63, suggesting that 
neurochemical imbalances might contribute to 
the neuropsychiatric features of AN. The marked 
deficiency of essential amino acids (EAAs) in AN 
patients carries significant implications79. EAAs 
are not only building blocks for proteins but also 
key regulators of appetite and food intake80. The 
notable decrease in total EAAs in AN patients 
points to a potential mechanism contributing to 
appetite dysregulation81, and the overall malnou-
rished state observed in AN. The increased ratio 

of tryptophan to valine, leucine, and isoleucine 
indicates preferential transport of tryptophan in 
AN patients. As these amino acids share the 
same transporters, this alteration might lead to 
an imbalance in the central nervous system’s 
neurotransmitter production82. The preferential 
transport of tryptophan over the BCAAs could 
contribute to decreased appetite and the perpe-
tuation of the catabolic state83. Finally, the meta-
bolic profile of anandamide and oleoylethanola-
mide showed interesting results. According to the 
literature84, anandamide is positively correlated 
with excessive physical activity. These data are 
supported by our findings. Indeed, anandamide 
was overexpressed in AN patients. On the con-
trary, oleoylethanolamide was more expressed in 
controls, while in literature seems to be positively 
correlated with weight loss85. 

While the findings of this study offer valuable 
insights into the metabolic alterations associated 
with AN, it is crucial to acknowledge the role of 
the chemosensory pathway in shaping the appe-
tite and eating behaviors of individuals with this 
disorder. The deficiencies in BCAAs and EAAs 
underscore the potential benefits of targeted nu-
tritional interventions that aim to restore these 
amino acid levels86. Such interventions could 
have a dual effect of preserving muscle mass and 
modulating appetite65. 

Limitations
However, it is essential to acknowledge certain 

limitations of the study. The cross-sectional desi-
gn limits the ability to establish causality and does 
not capture the dynamic changes that might occur 

Table III. Partial Least Squares Regression to identify the 
biomarkers more correlated to anorexia nervosa, comparing 
patients and controls data.

Molecules	 Importance_mean

Propionyl-Carnitine	 100
Carnitine	 93.04
LTB5	 92.93
Arachidonamide	 92.11
PGE2	 91.77
Linoleamide	 87.63
LTA4	 82.41
LTF4	 82.30
Leucine/Isoleucine	 82.01
OEA	 78.58
PGI2	 77.87
LTB4	 77.28
PGE1	 77.06
VALINE	 71.64
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over time. Additionally, the sample size is modest, 
warranting larger studies to validate these findings  
and explore potential factors influencing these 
metabolic alterations, such as disease duration, 
severity, and comorbidities.

Conclusions

The metabolomic analysis of hair samples from 
AN patients and healthy controls provides valuable 
insights into the metabolic disturbances associated 
with this complex disorder. The alterations in ami-
no acid concentrations, especially EAAs and BCA-
As, shed light on potential mechanisms underlying 
muscle wasting, appetite dysregulation, and neu-
ropsychiatric features in AN. Further research is 
warranted to unravel the intricate interplay of these 
metabolic changes and to develop early diagnosis 
and targeted therapeutic strategies that address the 
multifaceted nature of anorexia nervosa.
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