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Abstract. – OBJECTIVE: This study is aimed 
at analysing the endogenous metabolites pro-
filing of patients with diabetic osteoporosis, so 
as to provide the reference for pathogenesis re-
search of diabetic osteoporosis.

PATIENTS AND METHODS: The 1H-NMR me-
tabolomics technology, combined with pattern 
recognition analysis and SIMCA-P 12.0 statis-
tical analysis, were employed to identify the 
metabolites differences between diabetic pa-
tients with disordered bone metabolism (re-
search group) and healthy volunteers (normal 
group) in this study.

RESULTS: Compared with normal group, the 
results show that in research group, the levels 
of O-acetyl glycoprotein, proline, 1-methyl his-
tidine, tricarboxylic acid cycle (TCA cycle) prod-
uct (citric acid and α-ketoglutaric acid) decline, 
while the levels of branched chain amino acids 
(leucine, isoleucine, valine), glucose, choline, 
creatine, inositol, glutamine, aspartic acid, ala-
nine, glycine, and citrulline increase.

CONCLUSIONS: There are disordered meta-
bolic pathways and imbalanced bone synthet-
ic materials and regulatory substances in dia-
betic patients with bone metabolic abnormali-
ty. These metabolic abnormalities could be the 
specific indicators in early diagnosis of diabet-
ic osteoporosis.

Key Words:
Diabetic osteoporosis, Metabolomics, Pattern rec-

ognition, Biomarker.

Introduction

Diabetic Osteoporosis (DOP) is a type of 
osteoporosis secondary to diabetes, which is 
one of the chronic complications of diabetes 
mellitus (DM) as a consequence of severe met-
abolic disorder. Patients with DOP are prone to 
osteoporotic fractures, causing a high level of 
disability and mortality1. As for type 1 diabetes 
mellitus (T1DM), due to secretion deficiency of 
insulin and amylin, the anabolic effects reduce 
in patients with recent onset of T1DM, bring-
ing about impaired bone formation, whereas 
in long-standing T1DM patients, poor nutrient 
supply resulting from vascular complications 
may be attributable to low bone mass and in-
creased fracture risk. Despite patients with type 
2 diabetes mellitus (T2DM) show a higher bone 
mineral densities (BMD) than T1DM patients, 
they are also vulnerable to osteoporotic frac-
ture for the increased risk of falling. Therefore, 
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various strategies should be taken in different 
cases. Optimal glycaemic control and effective 
prevention and treatments of vascular complica-
tions are strategies to improve BMD and prevent 
osteoporotic fractures in patients with T1DM. 
To prevent patients with T2DM from falling, 
visual assessment should be arranged as early as 
possible, additionally, aerobic exercise which is 
helpful to strengthen muscle and keep one’s bal-
ance should be part of the treatment2. At pres-
ent, non-invasive methods, such as dual-energy 
X-ray absorptiometry (DXA), quantitative bone 
ultrasound, trabecular bone score (TBS), and 
FRAX software are widely used for evaluating 
bone quality in patients with diabetes. Howev-
er, these tools may underestimate the fracture 
risk in patients with DOP. For some T1DM and 
T2DM patients, bone quality is compromised 
and the risk of fracture increases even if they 
displayed a similar or higher BMD than indi-
viduals without diabetes3,4. In cases where such 
measurement fail to capture the actual tendency, 
bone turnover markers are helpful to reflect the 
state of bone tissue in early stages of DM.

Even though plenty of genetic researches, con-
cerning genome, transcriptome, epigenome, and 
even proteome, has greatly enriched our knowl-
edge in the etiology of osteoporosis recently, bi-
ological mechanisms underlying the development 
of DOP are still unclear. Moreover, there are 
very limited medications and prediction tools for 
DOP5,6. Therefore, for better understanding the 
pathogenesis and developing more comprehen-
sive prediction/diagnosis/prognosis tools of DOP, 
novel biomarkers remain much needed.

As an emerging and rapidly developing field, 
metabolomics provides an efficient approach to 
recognize biomarkers or characterize perturba-
tions of diseases through a series of processes, 
including detection, identification, and quanti-
fication, whose research objects are metabolites 
with low molecular-weight (< 1000 Da) in biolog-
ical samples7-9. In recent years, metabolomics has 
been successfully applied to identify abnormal 
signals or biomarkers in early stage10, characterize 
biological pathway11, and diagnose diseases10,12. 
For advantages, such as simple sample prepara-
tion, high reproducibility, and fast analysis, 1H 
nuclear magnetic resonance (NMR) spectroscopy 
has become one of the most widely used tools 
in metabolomic research. Also, 1H NMR-based 
metabolomics is suitable for analysing metabolite 
fingerprinting of multiple compounds simultane-
ously and systemically13.

However, there are few reports on diabetic 
osteoporosis concerning about its overall metab-
olism, adopting metabolism parameters to diag-
nose DOP are still needed further exploration. 
In this study, we investigated the differences of 
metabolites between diabetic patients with dis-
ordered bone metabolism and healthy volunteers 
by using 1H-NMR spectroscopy combined with 
pattern recognition analysis and SIMCA-P 12.0 
statistical analysis to reveal the pathogenesis of 
DOP and offer a potential approach in early di-
agnosis of DOP.

Patients and Methods

Ethics Statement 
This study was approved by the Institution-

al Ethics Committee of Guangdong Provincial 
Hospital of Chinese Medicine. It was conducted 
in accordance with the principles of the Second 
Revision of the Declaration of Helsinki, and 
written informed consent was signed by every 
participant.

Participants
In this study we recruited participants from 

Guangdong Provincial Hospital of Chinese Med-
icine. Participants were divided into two groups: 
normal group (18 healthy volunteers, including 11 
males, 35.5%, 7 females, accounting for 64.5%, 
mean age 45.70±4.87 years old), and research 
group (diabetic patients with disordered bone me-
tabolism, including 11 males, 35.5%, 7 females, 
accounting for 64.5%, mean age 46.60 ± 5.03 
years old). Participants with cancer, hepatic dis-
ease, kidney disease or genetic bone disease, or 
patients using medications (e.g., diphosphonate, 
glucocorticoids, oestrogen) that might influence 
bone metabolism were excluded. There are no 
statistical differences in age and gender between 
the two groups.

Sample Collection and Preparation
Blood samples from all participants were col-

lected in tubes with sodium ethylene diamine 
tetraacetic acid (EDTA). After centrifugation, 
the plasma samples were frozen at -80°C. Before 
running, samples were thawed and centrifuged 
with 10,000 Hz for 10 min at 4°C. 300 μL of each 
sample was transferred into a 5 mm NMR tube; 
we added 200 μL 0.2 mol/L phosphate buffer 
solution and 50 μL D2O (Qingdao Dragon Tech-
nology Co. ltd., Qingdao, China), and then, mixed 
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thoroughly for further analysis. All chemical and 
reagents used were of analytical grade and pur-
chased from related companies.

1H NMR Analysis
1H NMR spectra of plasma samples were 

recorded on a Bruker AVANCE III 500 MHz 
spectrometer (Bruker Biospin, Rheinstetten, 
Germany) equipped with an ultra-low tempera-
ture probe. The 1H NMR spectra were recorded 
with the relaxation edited Carr-Purcell-Mei-
boom-Gill (CPMG, RD-90°-(τ-180°-τ)n-acqui-
sition) pulse sequence to detect low-molecu-
lar-weight metabolites over a spectral width of 
1000 Hz with 4 s relaxation delay, 1 ms echo 
time, 64 loops, 128 transients and 64 k data 
points. The temperature during all experiments 
was kept at 298 K. The free induction decay 
(FID) signal is of the spectra were Fourier 
transformed to an NMR spectrum with FT size 
of 32 K. 

Statistical Analysis
Automatic integration was conducted by Top-

spin 2.0 software package (Bruker Biospin, Rhe-
instetten, Germany) in 1H-NMR spectrum. It 
ranged from 0.5 to 9 and the integral separation 
was 0.05 ppm. In order to eliminate the influence 
caused by the residual water peak, the integral 
value on a scale of δ 4.7-5.2 were set to zero. In 
addition, to eliminate the analysis error of sample 
resulting from different concentrations, the sub-
section integral was normalized before principal 
component analysis (PCA).

After the normalization, we used SIM-
CA-P+12.0 (UMETRICS AB, Malmo, Sweden) 
for PCA, partial least squares-discriminant anal-
ysis (PLS-DA), orthogonal projections to latent 
structures-discriminant analysis (OPLS-DA). R2 
and Q2 are the main parameters of model vali-
dation. R2 explains the model differences, while 
Q2 predicts the model differences. If numerical 
value of R2 and Q2 were closer to 1, the model 
fitting accuracy was better. If numerical value 
of R2 and Q2 were higher than 0.5 (50%), we 
assume that the model is better. The result of 
pattern recognition is commonly presented in 
the form of score plot and loading plot. The 
samples in the same pathophysiological state 
were supposed to contain similar components. 
Accordingly, they should also be in a similar 
position in the figure. If the distance between 
disease group and control group in the picture 
was far, the biochemical and metabolic respons-

es induced by diseases are abnormal, and vice 
versa. The loading plot reflects the contribution 
of each integral segment to the sample principal 
component score. Each point on the loading plot 
represents information about the components 
detected in the sample. Loading plots of OPLS-
DA models were obtained from MATLAB 7.1 
(Mathworks Inc., Natick, MA, USA) combined 
with correlation coefficients in this research. 
The specific metabolites between the groups 
were interpreted by variable importance in the 
projection (VIP) and correlation coefficients. 
The variables with a high VIP are considered 
to be statistically significant. In general, metab-
olites with VIP scores > 1 could be identified 
as biomarkers that might separate DOP patients 
from healthy controls.

All data were described as mean ± SD (stan-
dard deviation) and the statistical analyses were 
performed by Statistical Product and Service 
Solutions (SPSS) 17.0 statistical software (SPSS 
Inc., Chicago, IL, USA). The comparison be-
tween multiple groups was done by using One-
way ANOVA test followed by post-hoc test (Least 
Significant Difference). A value of p<0.05 was 
considered as statistically significant. 

Results

1H NMR Spectroscopy
The CPMG 1H NMR spectra (Figure 1) of 

plasma samples acquired from diabetic patients 
with disordered bone metabolism and healthy 
volunteers displayed the average signals of me-
tabolites. In total, 19 metabolites were identified 
in plasma samples which included lipids, glu-
cose, amino acids and organic acids, as shown 
in Figure 1.

Metabolites were detected in both groups of 
samples, containing branched chain amino acids 
(leucine, isoleucine, valine), tricarboxylic acid 
cycle products (α-ketoglutaric acid, citric acid), 
other amino acids, such as alanine, proline, glu-
tamine, glutamic acid and citrulline, and other 
metabolites, such as glucose, creatine, inositol, 
glycerol, choline, betaine, N-acetylglycoprotein 
and O-acetylglycoprotein (Table I).

Compared with normal group, many metabo-
lites in research group significantly changed: the 
levels of glucose, branched chain amino acids, 
proline, and betaine increased, while the levels 
of glutamine, inositol, and O-acetylglycoprotein 
reduced (Table I). 
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PCA Score Plot
To illustrate the differences in the metabolic 

profiles, the 1H NMR spectra dataset were fur-
ther analysed by PCA. The score plot exhibited 
a distinct separation of research group from nor-
mal group (Figure 2A and 2B, R2=79.2%, Q2= 
53.3%). As for the overlap in the score plot, we 
need more analysis like PLS-DA and OPLS-DA 
to demonstrate.

PLS-DA and OPLS-DA
To observe the clustering trends of samples 

obtained from diabetic patients with disordered 

bone metabolism and healthy volunteers, plasma 
metabolic profiling was conducted by PLS-DA 
and OPLS-DA.

As Figure 3A shown, research group could 
basically distinguish from normal group in the 
PLS-DA score plot (R2x=65.8%, R2Y=83.8%, Q2 
(cum)=48.8%). In order to further describe the 
featured changes of metabolic substances be-
tween research group and normal group, the 
OPLS-DA model (R2x=80.5%, R2Y=96.2%, Q2 
(cum)=67.2%) was built. In the score plot and 
loading plot (Figure 3B and 3C), the two groups 
could be completely separated from each other 

Figure 1. Representative serum 1H NMR Spectra from Diabetic patients with bone metabolism disorder group (red line) 
and healthy volunteer group (green line). Key: 1. Leucine; 2. Isoleucine; 3. Valine; 4. Alanine; 5. N-acetylglycoprotein; 6. 
O-acetylglycoprotein; 7. a-ketoglutaric acid; 8. Citrate; 9. Creatine; 10. Choline; 11. Betaine; 12. Citrate; 13. Glucose; 14. Inositol; 
15. Citrulline; 16. Glutamate; 17. Glutamine; 18. 1-methyl-histidine; 19. Tyrosine; The regions of δ 0.5~2.0 and δ 6.2~9.2 (A) in the 
serum spectra were vertically expanded by eight and four times respectively compared with the region of δ 2.0~4.6 (B).

Table I. Variation of the related metabolites between diabetic patients with bone metabolism disorder group and healthy 
volunteer group.

	 Chemical shift	 Metabolites	 	 ׀r׀ Variation trend

ɓ 0.97	 Leucine	 0.579	 ↑
ɓ 1.02ƍ	 Isoleucine	 0.561	 ↑
ɓ 0.99, 1.04	 Valine	 0.643	 ↑
ɓ 1.46	 Alanine	 0.414	 ↑
ɓ 2.03, 2.06	 N-acetylglycoprotein	 0.445	 ↑
ɓ 2.14	 O-acetylglycoprotein	 0.404	 ↓
ɓ 2.45, 2.46	 α-ketoglutaric acid	 0.467	 ↓
ɓ 2.54, 2.66	 Citrate	 0.407	 ↓
ɓ 3.03	 Creatine	 0.620	 ↓
ɓ 3.63	 Inositol	 0.532	 ↑
ɓ 3.34, 3.35	 Proline	 0.511	 ↑
ɓ 3.40~3.90	 Glucose	 0.551	 ↑
ɓ 3.75	 Glutamine	 0.543	 ↑
ɓ 7.06	 1-methyl-histidine	 0.511	 ↑
ɓ 7.19	 Tyrosine	 0.427	 ↑

Note: ׀r0.392< ׀, p < 0.05.
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and there was no cross or overlap between them. 
Since the numerical value of R2 and Q2 was close 
to 1 in OPLS-DA model, it was more credible 
than PCA and PLS-DA.

Furthermore, the correlation coefficient-load-
ing plot of metabolites was built (Figure 4). 
The upward peaks in the diagram represented 
a decrease of the correspondent metabolites in 
research group, while the downward valleys indi-
cated their increase. The redder the colour of the 
metabolites referred to in the figure, the greater 
the difference of them between the two groups 
will be. Whereas, the bluer the colour of the me-
tabolites referred to, the smaller the difference 
between the two groups. Since the total sample 

size in this research was 38, the critical value 
of the correlation coefficient ׀r׀ was supposed to 
be 0.392 according to the relevant Department 
Boundary Value Table. Differential metabolites 
with ׀r0.392< ׀ between the two groups indicated 
that the change was remarkable statistically sig-
nificance. As Figure 4 and Table I shown, there 
were declined levels of O-acetyl glycoprotein, 
proline, 1- methyl histidine, tricarboxylic acid cy-
cle product (alpha ketone glutaric acid, citric ac-
id), as well as increased levels of branched chain 
amino acids (leucine, isoleucine, valine), glucose, 
choline, creatine, inositol, glutamine, aspartic 
acid, alanine, glycine and citrulline in research 
group compared with normal group. 

Figure 2. Principal component analysis of serum 1H NMR spectra from diabetic patients with bone metabolism disorder 
group (S▲) and healthy volunteer group (Z▲). A, Scores plot. B, Loadings plot. PC1 vs. PC2, PC1 vs. PC2, R2=79.2%, Q2= 
53.3.

Figure 3. PLS-DA and OPLS-DA of serum 1H NMR spectra from diabetic patients with bone metabolism disorder group 
(♦) and healthy volunteer group (■). A, Scores plot of PLS-DA (R2x=80.5%, R2Y=96.2%, Q2 (cum)=67.2%). B, Scores plot of 
OPLS-DA (R2=92.6%, Q2= 81.4%); C, Loading plot of OPLS-DA.
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Discussion

The pathophysiological mechanisms of di-
abetic osteoporosis are not clear so far. For 
osteoporotic patients secondary to TIDM, bone 
remodeling slows down for relatively fast re-
sorption of bone resulting from deficient insulin 
secretion, leading to low BMD, descendant min-
eralization, and impaired microarchitecture14. 
Differently, in patients with T2DM-induced os-
teoporosis, in spite of high BMD, decreased 
microarchitecture quality of bone is noticed 
due to factors, such as sensorimotor deficiency 
and neuropathy caused by disturbed metabo-
lism. Hyperglycemia, oxidative stress and the 
accumulation of advanced glycation end prod-
ucts (AGEs) are likely to compromise collagen 
properties, increase marrow adiposity, release 
inflammatory factors, and adipokines from vis-
ceral fat. All these factors could induce func-
tional changes of osteocytes, potentially leading 
to DOP. Additionally, factors like hypoglycemia 
caused by treatment, certain antidiabetic med-
ications (such as thiazolidinediones) that exert 
direct effect on bone and mineral metabolism, 
may account for DOP possibly15-23.

In this study, the 1H-NMR metabolomics tech-
nology combined with pattern recognition anal-
ysis were used to characterize the endogenous 
metabolites differences between diabetic patients 
with disordered bone metabolism and healthy 
volunteers, through which we could basically 
identify subtle changes between the two groups 

and offer evidence for the existence of metabolic 
disturbance in DOP patients. In addition, me-
tabolomics is expected to be a novel diagnostic 
method of DOP in the future.

The Association Between Blood 
Glucose Control and DOP

It was found that the bone mass arose as the 
HbA1c reduced in DOP patients with treatment, 
which showed a negative effect of hyperglycemia 
on osteoblasts and emphasized the significance 
of hypoglycemic therapy to DOP. In the cases of 
well glucose control, the risk of DOP declined 
and the BMD increased24,25. By osteoblasts in 
culture, it was proved that chronic hyperglycae-
mia downregulated the expression of osteocalcin 
gene (BGLAP) and had influence on the uptake 
of calcium26,27. Moreover, acidosis caused by hy-
perglycemia might also enhance the resorption of 
bone28. Hyperglycemia and oxidative stress might 
impact mesenchymal stem cell differentiation 
with adipogenesis having advantage over bone 
formation. Due to hyperglycemia and enhanced 
levels of oxidative stress, the accumulation of 
AGEs was increased in patients with diabetes. All 
these above-mentioned factors reflected a close 
relationship between glucose and the develop-
ment of DOP. 

The Association Between Energy 
Metabolism and DOP

In the process of bone remodeling, a large 
amount of energy are required, especially in the 
dissolution of crystalline calcium phosphate or 
hydroxyapatite and degradation of fibrillary col-
lagen. Once the energy metabolism is disturbed, 
the bone formation would be impeded, accompa-
nying impaired skeletal neurosensory function 
according to the theory of use and disuse.

It was observed that the concentration of citric 
acid and α-ketoglutaric acid declined in research 
group, which are intermediate in the TCA cycle 
and utilized by all aerobic organisms to produce 
usable chemical energy, whereas the levels of 
glutamine and other metabolites in the TCA cycle 
increased, indicating a low energy status of the 
osteoblasts and adverse effect on bone metabo-
lism29-34.

As a type of cyclitol, the structure of inositol 
allows the construction of a great quantity of 
stereo chemically unique molecules which are 
involved in every regard of cellular regulation35,36 
. Also, as the highest proportion of organic mol-
ecules in phosphate groups, inositol is taken for 

Figure 4. Correlation coefficient-loading plot of the dif-
ferentiation among diabetic patients with bone metabolism 
disorder group and healthy volunteer group.
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one of the most important constituents of inositol 
pyrophosphates, and able to adjust a lot of bio-
logical processes by the metabolism of energy 
and the production adenosine triphosphate (ATP) 
possibly37. In comparison with normal group, 
the level of inositol elevated in research group, 
reflecting a declined status of energy metabolism 
in bone regeneration.

The Association Between Amino 
Acid Metabolism and DOP

In the formation of DOP, perturbations of ami-
no acid metabolism was found, accounting for de-
ficient bone biosynthetic material and disordered 
bone metabolic signal.

Compared to normal group, the content of 
N-acetylglycoprotein was measured higher 
in research group, while the concentration of 
O-acetylglycoprotein was detected lower in that, 
showing a broken homeostasis of glycosylation 
and modification for the participation of these 
metabolites. The cytoplasmic and nuclear pro-
teins are modified after translation by O-linked 
β-N-acetylglucosamine (O-GlcNAc), because of 
glucose flux through the hexosamine biosynthetic 
pathway. In the plasma membrane, O-GlcNAc 
transferase (OGT) is assembled from the nucleus, 
where the OGT catalyzes the insulin signaling 
pathway by O-GlcNAc for its dynamic modifi-
cation. The excessive expression of OGT in liv-
er damages the expression of insulin-responsive 
genes and gives rise to insulin resistance. These 
findings underlined the contribution of nutritional 
cues regulating insulin signaling through O-Glc-
NAc to the molecular mechanism and verified 
the relationship between this modification and 
the etiology of insulin resistance and T2DM38-49.

As the results shown, the proline level de-
creased in research group. As one of the main 
substrates in the biosynthesis of collagen biosyn-
thesis, proline is demanding for the formation of 
collagen molecule50. In trabecular bone, the spiral 
structure of the polypeptide chain has a close 
relationship with proline and hydroxyproline in 
collagen. Thus, hydroxyproline can strengthen 
the structure of bone by producing hydrogen 
and oxygen bridge and the lack of proline could 
influence the synthesis of new collagen in bone 
tissues, promoting the develop of DOP to some 
extent.

The contents of branched chain amino ac-
ids and alanine were higher in the research 
group than normal group. The increase of these 
branched chain amino acids and alanine appeared 

to be a signal of disordered glucose utilization 
in diabetic patients, for their engagement in the 
glucose-alanine cycle, which imply the process 
of hepatic gluconeogenesis51,52. Besides, the con-
tent of 1-methyl-histidine declined while creatine 
elevated in research group, which is commonly 
seen in malnourished or decomposed skeletal 
muscle, reflecting an abnormal stability of bone. 
Evidently, these changes in metabolites leads to 
DOP somehow.

It was detected that the level of glutamate rose 
in the research group. With the expression of their 
receptors on bone cells, glutamate could lead 
to bone resorption53. Furthermore, glutamate is 
one of the important ingredients for osteoblasts 
producing osteocalcin, which is considered as 
marker of bone formation. The accumulation of 
AGEs induced by hyperglycemia might inhibit 
the synthesis of osteocalcin, contributing to a 
recession of bone formation54,55. The metabolism 
of glutamine regulates the bioenergetics of os-
teoblasts and osteocytes directly or indirectly as 
well, revealing a tight link between glutamine 
metabolism and degenerative diseases like oste-
oporosis56.

In the research group, the level of tyrosine 
lifted. In the regulation of all biological process-
es, tyrosine phosphorylation of cellular proteins 
plays a vital role as signaling event. Both pro-
tein-tyrosine kinases (PTKs) and protein-tyro-
sine phosphatases (PTPs) are essential in this 
signaling network57. Yu et al56 showed that the 
inhibition of PTK, particularly kinases encod-
ed by c-Src and c-Fms proto-oncogenes, could 
suppress bone remodelling. Consequently, the 
regulation of tyrosine phosphorylation is critical 
in bone function. Still some studies demonstrated 
that in T2DM, insulin production, and beta cell 
growth or insulin signaling were regulated by 
protein tyrosine phosphatase Meg2 (PTPMeg2) 
by inhibiting the dephosphorylation of insulin 
receptor58-61. All these studies explained the influ-
ence of tyrosine on DOP.

Conclusions

In this NMR-based metabolomics study, sig-
nificant differences between diabetic patients 
with bone metabolic disorder and normal human 
in metabolic profiles of their plasma samples 
were found. There were remarkable changes in 
TCA, glucose metabolism, energy metabolism, 
amino acid metabolism, and glycosylation in re-
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search group. All these metabolic abnormalities 
might bring about insufficient of bone synthetic 
materials and disordered bone metabolism regu-
lation, revealing the underlying mechanism of di-
abetic bone metabolic abnormalities. Potentially, 
these metabolic abnormalities could be applied as 
specific indicators to early diagnosis of diabetic 
osteoporosis in the near future.
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