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Abstract. – OBJECTIVE: Autism is a disor-
der that manifests itself in early childhood. Ear-
ly diagnosis of autism may not only help the af-
fected children themselves, but also affect family 
well-being and social stability. The natural drug 
Albizia bark has been reported to have some ef-
fect in the prevention and treatment of autism in 
children. Therefore, we used network pharmacol-
ogy and molecular docking to explore the possi-
ble mechanism.

MATERIALS AND METHODS: TCMID and 
BATMAN-TCM was used to retrieve the chem-
ical constituents of Albizia bark, and then ob-
tained the relevant targets about autism by 
TTD, Gene Cards and OMIM. The resulting in-
gredients and targets were predicted, then a 
protein interaction network was constructed, 
and finally bioinformatics analysis was per-
formed. Finally, molecular docking was used to 
verify the effective ingredients and targets ob-
tained from the screening.

RESULTS: Leucaena saponin B, luteolin, 3’, 4’, 
7-trihydroxyflavone, which may be the key com-
pounds for the treatment of autism. BP mainly 
involving signal transduction, G protein coupled 
receptor signal pathway, protein phosphoryla-
tion. CC, mainly involving plasma membrane, in-
tegral component of plasma membrane, MF, in-
cluding protein binding, adenosine triphosphate 
binding, protein kinase activity. Molecular dock-
ing showed that AKT1, HRAS, PIK3CA, PIK3R1 
and SRC, five potential targets, had good bind-
ing ability to Leucaena saponin B.

CONCLUSIONS: The natural drug Albizia bark 
exerts pharmacological effects in a multi-com-
ponent, multi-target and multi-channel manner, 
including neural regulation, inflammatory re-
sponse and immune regulation.

Key Words:
Albizia bark, Autism, Nursing effect, Network pharma-

cology, Molecular docking.

Abbreviations:
PPI, Protein-protein interaction; GO, Gene Ontolo-

gy; KEGG, Kyoto Encyclopedia of genes and genomes; 
BP, Biological process; CC, cell composition; MF, molec-
ular function.

Introduction

Autism is a disorder that manifests itself in 
early childhood with an inability to acquire so-
cial skills, repetitive behaviors, and failure in the 
development of verbal and nonverbal communi-
cation1. Pediatricians and nurses not only play an 
important role in the early diagnosis of autism in 
children, but in also influencing the development 
and prognosis of the disorder2. Early diagnosis 
and timely treatment of autism is not only bene-
ficial to the child, but also affects family well-be-
ing and social stability3. The current prevalence 
of autism is reported to be about 0.76%, which 
means that there are about 760 children with au-
tism for every 10,000 children4. In China, there 
are about 250 million children (0-14 years old), 
of which about 70 million are young children 
(0-3 years old). A nationwide survey of Chinese 
children with autism showed that the prevalence 
of autistic children in China is about 0.29% and 
is increasing5; according to this estimate, there 
are approximately 2.03 million cases of autism 
in early childhood in China. According to Baird 
et al3, autism in children can be definitively diag-
nosed at the age of 2-3 years. Due to various per-
sonal, family, and social influences, some chil-
dren with autism are not diagnosed in a timely 
manner, and many families are reluctant to admit 
that their child has autism6. This makes pedia-
tricians and nurses often internally conflicted, 
reminding us of the need to spread knowledge 
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about autism on the one hand, while on the other 
hand, the prevention and treatment of autism re-
mains a worldwide challenge. Currently, most of 
the treatments related to autism are based on be-
havioral induction7-9. Chinese medicine, as a part 
of medicine, also plays a role in the treatment of 
autism10,11. Natural drugs can intervene and act 
in autism in multiple targets and have advantag-
es for prevention and individualized treatment 
of autism. It is reported that the active ingredi-
ent of natural drug Albizia bark can alleviate the 
stress state12. The use of network pharmacology 
and molecular docking technology can provide a 
more powerful basis for the treatment of autism 
with natural drugs13. In this study, we used the 
above methods to explore and predict the effec-
tive molecular targets and potential mechanisms 
of Albizia bark in the treatment.

Materials and Methods

Chemical Composition Collection and 
Target Prediction of Albizia Bark

The chemical composition of Albizia bark 
was searched in the TCMID (available at: 
https://119.3.41.228:8000/tcmid/) and BAT-
MAN-TCM (available at: https://bionet.ncpsb.
org/batmantcm/). The literature was searched 
for pharmacologically active and blood-entering 
components for compound supplementation and 
screening, finally a database of bioactive com-
ponents of Acacia bark was constructed. Swiss 
Target Prediction (available at: https://swisstar-
getprediction.ch/) was used for target prediction, 
with the species set at “Homo sapiens” in the 
search criteria, and targets with a probability of 
0 were excluded, thus eliminating the chemical 
components with no relevant information. 

Acquisition of Autism-Related Targets
Keywords searched were “autism”, “Depres-

sion” in the TTD (available at: https://db.idrblab.
net/ttd/), Gene Cards (available at: https://www.
genecards.org/) and OMIM (available at: https://
omim.org/). The targets associated with autism 
were obtained, and all targets of the three data-
bases were integrated in Excel; duplicate genes 
were excluded and corrected using UniProt da-
tabase.

Drug-Disease Target Prediction Results
The obtained constituent targets were mapped 

to each other with autism targets, and then, Veen 

plots were made to obtain the intersecting genes. 
Then Cytoscape 3.8.0 software (available at: 
https://cytoscape.org) was used to construct the 
“compound-target” network. Degree, Closeness 
Centrality, Betweenness Centrality were select-
ed as the quantifiers in the network. The greater 
the value of Degree, Closeness Centrality and 
Betweenness Centrality, the more important the 
node is in the network. The core components were 
selected.

Target Protein Interaction Network 
Construction

To further investigate the protein interactions 
between Albizia bark for autism, the drug-inter-
acting genes were uploaded to the interaction da-
tabase String (available at: https://string-db.org/) 
for protein interaction network construction (PPI) 
database. The species was set at “Homo sapiens”, 
and the minimum interaction score was set at 0.9 
to ensure the credibility of this study. The other 
parameters remain the default settings, and the re-
sults are stored in TSV format. The TSV file was 
imported into Cytoscape 3.8.0, the network was 
analyzed, and the network analysis results were 
saved.

GO Enrichment Analysis and KEGG 
Pathway Analysis

Uploading the drug disease intersection gene 
into the DAVID database (Database for Anno-
tation, Visualization and Integrated Discovery 
available at: https://david.ncifcrf.gov/summary.
jsp – gene identifier selection: official_ GENE_ 
Symbol), the species setting was: Homo sapi-
ens. Using DAVID 6.8 GO gene function we 
detected the role of Albizia bark in the treat-
ment of autism and the role of target proteins 
in gene function thanks to three aspects: bio-
logical process (BP), cellular component (CC) 
and molecular function (MF). In order to clarify 
the target of Albizia bark in the treatment of au-
tism, KEGG pathway enrichment analysis was 
carried out in the signal pathway. GO function 
entry and KEGG pathway entry (p < 0.05) were 
selected as the main gene function enrichment 
processes and signal pathways of Albizia bark 
in the treatment of autism, so as to predict the 
mechanism of Albizia bark.

Molecular Docking
Through KEGG pathway enrichment analysis, 

we identified potential Albizia bark related genes 
targeted by autism active ingredients. These tar-
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gets were confirmed by molecular docking. Vali-
dated components were SRC, PIK3CA, PIK3R1, 
HRAS and AKT1. The crystal structures of the 
validation components were obtained from the 
RCSB Protein Data Bank (PDB, https://www.
rcsb.org/). iGEMDOCK software was used for 
molecular docking. The software automatically 
used default parameters during standard docking. 
From the molecular docking results, we selected 
the top five receptor proteins with the lowest en-
ergy values and the ligands that most stably bound 
to these receptor proteins and ran Auto-Dock Vina 
1.1.2 autodocking. The best scoring small mole-
cule from each protein was selected for interaction 
mode analysis, and the interaction mode of the 
docking results was analyzed using PyMOL2.3.0 
and LIGPLOT V 2.2.4.

Statistical Analysis
All differentially expressed proteins were 

compared to all of the experimentally identified 
proteins with KEGG annotation results to reveal 
the enriched pathways, as determined by Fisher’s 
exact test. p < 0.05 was considered statistically 
significant.

Results

Prediction of Active Components  
and Targets of Albizia Bark

47 components of Albizia bark were re-
trieved from TCMID database and 15 from BAT-
MAN-TCM database. After removing duplicates, 
a total of 47 chemical components were collected. 
At the same time, through literature search, for 
chemical components with clear pharmacological 
effects and blood components as candidate active 
components, a total of 50 bioactive components 
were finally screened. Swiss target prediction was 
used to predict, and a total of 680 targets corre-
sponding to the composition of Albizia bark were 
obtained.

Autism Related Targets
91 autism related targets were obtained from 

TTD database, 10,367 autism related targets were 
obtained from Gene Cards database, and 3 autism 
related targets were obtained from OMIM data-
base. Combining the data of the three databas-
es, taking Gene Cards database as the standard, 
using Excel to eliminate duplicate genes, a total 
of 10,461 target genes were obtained, and the ob-

Gene Target protein name Degree of 
freedom

Near  
centrality

Intermediate  
centrality

SRC Proto-oncogene tyrosine-protein kinase Src) 30 0.45 0.13 

PIK3CA Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 
subunit alpha isoform 27 0.42 0.04 

PIK3R1 Phosphatidylinositol 3-kinase regulatory subunit alpha 27 0.42 0.04 
HRAS GTPase HRas 26 0.45 0.09 
AKT1 RAC-alpha serine/threonine-protein kinase 22 0.43 0.06 
RELA Transcription factor p65 20 0.39 0.06 
JAK2 Tyrosine-protein kinase JAK2 20 0.41 0.03 
HSP90AA1 Heat Shock Protein 90 Alpha Family Class A Member 1 19 0.39 0.03 
IL2 interleukin 2 18 0.38 0.02 
EGFR Epidermal growth factor receptor 18 0.41 0.03 
JAK1 Tyrosine-protein kinase JAK1 17 0.38 0.01 
JUN Transcription factor AP-1 17 0.39 0.03 
JAK3 Tyrosine-protein kinase JAK3 16 0.38 0.09 
RPS6KB1 Ribosomal protein S6 kinase beta 1 15 0.40 0.02 
MAP2K1 Dual specificity mitogen-activated protein kinase 1 15 0.41 0.05 
MTOR Serine/threonine-protein kinase mTOR 14 0.39 0.02 
PTK2 Focal adhesion kinase 1 14 0.37 0.09 
ESR1 Estrogen receptor 13 0.37 0.01 

PIK3CB Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 
subunit beta isoform 13 0.36 0.00 

PTPN1 Tyrosine-protein phosphatase non-receptor type 1 13 0.36 0.04 

Table I. Relevant parameters of core target network.

https://www.rcsb.org/
https://www.rcsb.org/
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tained genes were corrected by UniProt database 
(Supplementary Table I).

Drug Disease Target Prediction Results
Using bioinformatics & Evolutionary Ge-

nomics (available at: https://bioinformatics.
psb.urgent/) the intersection of Albizia bark 
related compound targets and autism related 
targets, and a total of 294 drug disease inter-
section genes were obtained. Using Cytoscape 
3.8.0 we built the “component target” network 
diagram, and screened out the key components 
through Cytoscape, as shown in Figure 1. The 
key components were: Leucaena saponin B, 
luteolin, 3’, 4’, 7-trihydroxyflavone, which 

may be the key compounds for the treatment 
of autism. 

Core Target and Network Interaction
A total of 294 Albizia bark component targets 

obtained from Wayne diagram and autism relat-
ed targets were imported into string (available at: 
https://string-db.org/). The protein-protein inter-
action was predicted in the database. The species 
was set as “Homo Sapiens”, and the confidence 
was set as 0.9. Using Cytoscape 3.8.0 software, 
we draw the protein-protein interaction network, 
reflect the size and color of the target with the de-
gree value, and reflect the thickness of the edge 
with the combined score value, so as to construct 

Figure 1. Key components target network diagram. Circles represent proteins, and straight lines represent interactions between 
protein.
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the protein-protein interaction network, as shown 
in Figure 2. The network had a total of 156 nodes 
and 418 edges. The relevant parameters of the 
core target network with the highest degree value 
are shown in Table I.

Biological Function Enrichment Analysis
Taking the drug disease intersection gene and 

using David database for go gene function en-
richment analysis, a total of 624 go entries were 
screened, of which 299 were related to biological 
process (BP). Taking p < 0.05 as the standard, 30 
main items with significantly enriched biological 
functions of Albizia bark in the treatment of au-
tism were screened, as shown in Figure 3, mainly 
involving signal transduction, G protein coupled 
receptor signal pathway and protein phosphoryla-
tion. There are 74 cell compositions (CC), mainly 
involving plasma membrane, integral component 
of plasma membrane. Among them, 194 are relat-
ed to molecular function (MF), including protein 

binding, adenosine triphosphate binding, protein 
kinase activity, etc. KEGG pathway enrichment 
analysis was performed in signaling pathways to 
elucidate Albizia bark therapeutic targets for au-
tism. Go functional entries and KEGG pathway 
entries (p < 0.05) were selected as the main gene 
functional enrichment processes and signaling 
pathways involved in Albizia bark treatment for 
autism, to predict the mechanism of Albizia bark 
treatment for autism (Figure 4). 

By using David database for pathway enrich-
ment analysis, a total of 164 pathways related to 
the treatment of autism with Albizia bark were 
enriched. The pathways related to the treatment of 
autism with Albizia bark were screened according 
to p < 0.05. The pathways related to autism were 
screened, including neuroactive ligand receptor 
interaction, PI3K-Akt signal pathway, cAMP sig-
nal pathway, and other signaling pathways.

The size of the circle represents the data of 
genes enriched in the corresponding pathway, 

Figure 2. Protein-protein interaction diagram.
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and from green to red represents that the p-value 
gradually decreases. The top 20 KEGG metabol-
ic pathways will be screened according to the 
p-value, and the bubble diagram will be drawn 
according to the p-value. The horizontal axis is 
expressed by the number of genes enriched in the 
pathway. The size of the bubble represents the 
number of genes enriched in the corresponding 
pathway, and the depth of the color represents 
the significance, which can intuitively observe 
the significance enrichment information.

Analysis of Molecular Docking Results
According to the results of KEGG pathway 

enrichment analysis, we selected the neuroactive 
and receptor interaction signal pathway, which 
accounts for the largest proportion of genes in-
volved in different biological functions and sig-
nal pathways in the total number of cross genes 
in autism, for further analysis. Based on the cor-
responding relationship between drug and target, 
the target protein pathway is locked by molecules. 
Using auto-dock Vina software, the five target 

Figure 3. Go enrichment analysis of Albizia bark in the treatment of autism.
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proteins with the lowest energy value (AKT1, 
HRAS, PIK3CA, PIK3R1 and SRC) in molecular 
docking were connected with the active compo-
nent Leucaena saponin B. Figure 5 shows the best 
docking combination for molecular docking. The 
binding energies of target protein and Leucaena 
saponin B, including AKT1, HRAS, PIK3CA, 
PIK3R1 and SRC, were -7.9, -9.1, -10.2, -9.4 and 
-9.4 kcal/mol, respectively. This indicates that 
Leucaena saponin B has good binding ability to 
these targets.

Discussion

The action mechanism of traditional Chinese 
medicine in the treatment of autism is complex, 
with many components and targets. When the 
pathogenesis has not been clarified, the method 
of network pharmacology allows us to systemati-
cally study the effective components, targets and 

pathways of drugs at the molecular level, so as to 
improve our understanding of the interaction be-
tween components, targets and pathways. In this 
study, the key components show that Leucaena 
saponin B, luteolin and 3’, 4’, 7-trihydroxyfla-
vone may be key compounds for the treatment of 
autism.

This finding suggests that these components 
may be very important for the therapeutic effect 
of autism, which is worthy of further exploration. 
It is reported that the nervous system inflamma-
tion of autistic children is the main cause of its 
pathogenesis14. The lack of unique pathogenesis 
and reliable biomarkers hinders the development 
of effective treatment of self-diseases. Therefore, 
the psychopharmacological drugs prescribed 
to most children with autism cannot solve their 
core symptoms. Research15-17 shows that the use 
of effective components of natural drugs can im-
prove the symptoms of autistic children to a cer-
tain extent. Luteolin has been shown to improve 

Figure 4. Bubble Diagram of KEGG enrichment pathway of Acacia bark in the treatment of autism.
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mental symptoms18 and brain inflammation in 
children with autism19. Luteolin has antioxidant, 
anti-inflammatory, anti-allergic and neuroprotec-
tive properties, which may improve patients’ oxi-
dative stress, brain inflammation, gastrointestinal 
dysfunction and allergic symptoms20,21. Leucaena 
saponin B, as one of the effective components of 
natural drug Acacia, has been confirmed in anti-in-
flammatory and improving nerve injury22. It can 
not only improve pain and nerve injury in mice, but 

also have good performance in antidepressant23. It 
is reported that 3’,4’,7-Trihydroxyflavone prevents 
apoptotic cell death in neuronal cells from hydro-
gen peroxide-induced oxidative stress. Scholars24 
have shown that the neuroprotective effect of 3’, 
4’, 7-trihydroxyflavone makes it a promising can-
didate for the treatment of neurodegenerative dis-
eases. Its mechanism is mainly realized by affect-
ing the downstream response through MAPK and 
PI3K/Akt signaling pathways.

Figure 5. Molecular docking. A, AKT1; B, HRAS; C, PIK3CA; D, PIK3R1; E, SRC.



Exploring the nursing effect of application Albizia bark on autism in children

8547

In PPI network, according to the node degree, 
the main targets of autism are SRC, PIK3CA, 
PIK3R1, HRAS and AKT1. SRC plays an im-
portant role in the development and maturation 
of the brain25. The study confirmed that the nor-
mal secretion of SRC can improve the irritability 
of autistic children26, and it was also found that 
the model mice had self-diseased behavior after 
SRC injury: excessive repetitive behavior and 
social defects27. Similarly, most of the reports on 
PIK3CA, PIK3R1 and AKT1 are accompanied 
by PI3K-Akt-mTOR signal pathway28-30. Most of 
these reports are related to neural mechanisms, 
such as brain development28,31, brain injury28,29,32 
and childhood autism28-31. HRAS is reported to be 
associated with autism and attention deficit hyper-
activity disorder33. Possible association of c-Har-
vey-Ras-1 (HRAS-1) marker with autism34.

Biological information is one of the meth-
ods to explain the pathogenesis. It is found 
through bioinformatics analysis that the signal 
transduction35, G protein coupled receptor sig-
nal pathway36, protein phosphorylation37, plas-
ma membrane38, integral component of plasma 
membrane39, protein binding40, adenosine tri-
phosphate binding41, protein kinase activity42, all 
affect the occurrence and development of autism.

The signal pathway can reveal the possible 
mechanism of action. The three signal path-
ways obtained by KEGG enrichment, neuroac-
tive ligand receptor interaction, PI3K Akt signal 
pathway and cAMP signal pathway, are rela-
tively closely related to autism. Studies28-30,43-46 
showed some important pathways related to au-
tism, which may regulate targets related to these 
pathways, such as neuroactive ligand receptor 
interaction, cAMP signaling pathway and PI3K 
Akt signaling pathway. This fully proves that 
the three signal pathways of neuroactive ligand 
receptor interaction, cAMP signaling pathway 
and PI3K Akt signaling pathway may regulate 
the neural development of the brain to varying 
degrees, inhibit nerve injury and improve the 
secretion and expression of some proteins, thus 
affecting the occurrence and development of 
self-diseases47-50. It also proves from the side that 
the effective components of natural drug Acacia 
may improve the symptoms of autistic children 
to a certain extent. 

In order to further explore the potential molec-
ular mechanism of Albizia bark in the treatment 
of autism, we used the key component Leucae-
na saponin B as ligand and conducted molecular 
docking research on five targets closely related 

to autism through KEGG based screening. The 
results showed that the five potential targets had 
good binding ability with Leucaena saponin B.

Of course, although this study has reached 
some conclusions, there are some limitations. We 
only discussed the role of Albizia bark in autism 
at the level of network pharmacology. Therefore, 
the results obtained in this study need to be ver-
ified in pharmacodynamics, and mechanism ex-
periments need to be carried out to explain the 
complex multi-target, multi-channel and syner-
gistic interactions involved in the treatment of 
autism.

Conclusions

In this study, the network pharmacology meth-
od was used to analyze the mechanism of Albizia 
bark in the treatment of autism. Our results show 
that the natural drug Albizia bark exerts pharma-
cological effects in a multi-component, multi-tar-
get and multi-channel manner, including neural 
regulation, inflammatory response and immune 
regulation. Our results provide a reference for the 
further study of the treatment mechanism of au-
tism and a certain idea for the conservative treat-
ment of autism with natural drugs.
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