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Abstract. – OBJECTIVE: Heat shock pro-
tein 90 (HSP90) is a highly conserved ATP-de-
pendent chaperone protein that plays a vital 
role in tumorigenesis. This study aims to investi-
gate the apoptosis inducer role of BIIB021 (oral-
ly available HSP90 inhibitors) compound via in-
hibition of HSP90 activity in the human cervical 
cancer cell line (HeLa). 

PATIENTS AND METHODS: The antican-
cer potential of BIIB021 was determined by XTT 
[2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)] cell 
proliferation assay against the human cervical 
cancer cell line (HeLa). ATPase and luciferase 
aggregation assays were carried out to detect 
the HSP90 inhibitor potential of BIIB021. To de-
termine the antiproliferative mechanism of the 
BIIB021, the expression level of the pro-apoptot-
ic and antiapoptotic markers was determined by 
reverse transcription polymerase chain reaction 
(RT-PCR) and ELISA experiments.

RESULTS: BIIB021 exhibited a cytotoxic effect 
on HeLa cell proliferation and the inhibitory con-
centration (IC)50 dose of BIIB021 was found to be 
14.79 nM at 48 h. BIIB021 decreased the ATP hydro-
lysis rate of HSP90 and blocked the refolding of the 
desaturated luciferase in the presence of ATP. To 
understand the antiproliferative mechanism of the 
BIIB021 in HeLa cells, the mRNA and protein ex-
pression levels of the apoptotic markers [BCL-2 as-
sociated X (BAX), B-cell lymphoma 2 (BCL-2), cyto-
chrome-c (CYT-c), and caspase-3 (CAS-3)] were de-
termined by RT-PCR and ELISA experiments. The 
results obtained indicated that BIIB021 decreased 
BCL-2 levels and increased BAX, CYT-c, and CAS-
3 levels in human cervical cancer cells.

CONCLUSIONS: These results confirmed 
that BIIB021 inhibited the chaperone activity of 
HSP90, resulting in anti-proliferating effects in 
cervical cancer cells via the induction of the in-
trinsic apoptotic pathways.
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Introduction

Cervical cancer is the fourth most common 
cancer type among women worldwide. In 2020, 
approximately 600,000 women were diagnosed 
with cervical cancer and about half of these cases 
died globally1. Decreased incidence of squamous 
cell cervical cancer, the most common histopa-
thological subtype, has been determined in the 
last three decades. However, an increase in the 
incidence of cervical adenocarcinoma, the se-
cond most common histological type, has been 
detected from 5% to 20%. Human papillomavi-
rus (HPV) infection is the most important risk 
factor for cervical cancer, accounting for 99% of 
the squamous type and 85% of adenocarcinoma 
types. Moreover, smoking, a weakened immune 
system, and the use of diethylstilbestrol (an ar-
tificial form of estrogen) by mothers of patients 
during pregnancy are other risk factors for the de-
velopment of cervical cancer1-6. Chemotherapy is 
one of the therapeutic options for the treatment of 
cervical cancer, particularly in advanced stages. 
Platinum-based drugs (cisplatin and carboplatin), 
paclitaxel (Taxol), topotecan, and bevacizumab 
are widely used to treat locally advanced and me-
tastatic cervical cancer7,8. To improve treatment 
outcomes of cervical cancer, researchers9-11 have 
been focused on the development of effective 
target-specific chemotherapeutics. In this context, 
HSP90 has a big biological potential for desi-
gning next-generation target-specific drugs for 
the treatment of cervical cancer.

HSP90 is an important member of the chapero-
ne protein family, and its expression is extremely 
increased in cancer cells. HSP90 stabilizes and 
activates oncogenic client proteins (growth factor 
receptors, steroid hormone receptors, tyrosine 
kinases, cell cycle regulators, and transcriptional 
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factors) and stimulates malignant progression12-15. 
Especially, apoptotic machinery is closely asso-
ciated with HSP90 activity in cancer cells. Up-re-
gulation of HSP90 promotes cancer cell survival 
and protects cells against apoptosis. To suppress 
intrinsic and extrinsic apoptotic pathways in tu-
mors, HSP90 decreases the release of cytochro-
me-c (CYT-c) by activating B-cell lymphoma 2 
(BCL-2) and blocks the activation of caspase 8/10 
in the death-inducing signaling complex15-18. Inhi-
bition of HSP90 activity disrupts oncogenic signa-
ling pathways via the degradation of oncogenic 
client proteins and stimulates apoptosis. Therefore, 
inhibition of HSP90 has been a significant phar-
maceutical strategy for the treatment of cancer19-22.

HSP90 is composed of three conserved do-
mains:  N-terminal domain (NTD), middle do-
main (MD), and C-terminal domain (CTD). NTD 
contains ATP binding pocket, and ATP hydrolysis 
energy provides proper conformation of HSP90 
for the proper folding mechanism of oncogenic 
client proteins. Therefore, the ATP binding pocket 
of the NTD has been an important target in deve-
loping effective HSP90 inhibitors. Most HSP90 
inhibitors have higher binding affinity than ATP 
for NTD15,23,24. The anticancer potential of HSP90 
inhibitors has been extensively evaluated against 
a wide variety of cancer types in experimental 
and clinical studies12,14,15 for nearly 20 years. In 
clinical studies25,26, first-generation HSP90 inhibi-
tors [geldanamycin, 17-N-allyl-17-demethoxygel-
danamycin (17-AAG), radicicol, and retaspimycin 
HCl (IPI-504)] did not display therapeutic efficien-
cy on cancer types for their solubility problems 
and adverse effects. Therefore, orally available 
next-generation HSP90 inhibitors have been desi-
gned for therapeutic applications on cancer types27.

BIIB021 (also known as CNF2024) (3’,5’-di-
methyl-4’-methoxy-2’-pyridyl derivative) is the 
first orally administrated and fully synthetic 
HSP90 inhibitor that has been tested in in-vitro, 
in-vivo and clinical studies28-30 to understand its 
anticancer activities against cancer types. BI-
IB021 selectively and potently blocks HSP90 
ATPase activity, thereby inhibiting the proper 
folding of oncogenic client proteins (Figure 1). 
Experimental studies28,29 reported that BIIB021 
shows a higher affinity for the NTD region of 
HSP90 compared to ATP and other inhibitors 
(BIIB021: ~1.7nM and ~17-AAG: 4.6 nM). There-
fore, BIIB021 is a promising HSP90 inhibitor in 
next-generation cancer drug discovery. 

In experimental and clinical studies, the anti-
cancer potential of BIIB021 has not been studied 

on cervical cancer yet. Thus, in this study, we 
investigated the underlying mechanisms of BI-
IB021 on inhibition of cell proliferation with in-
duction of apoptotic pathway in the human cervi-
cal adenocarcinoma cell line (HeLa). This study 
posited the hypothesis that HSP90 inhibition by 
BIIB021 might be a new therapeutic strategy for 
the treatment of cervical cancer. 

Materials And Methods

Materials
BIIB021 (6-Chloro-9-[(4-methoxy-3,5-di-

methyl-2-pyridinyl)methyl]-9H-purin-2-amine) 
was supplied from Adooq (Irvine, CA, USA). 
HeLa cell line was from ATCC (American Type 
Culture Collection, Manassas, VI, USA). Ea-
gle’s Minimum Essential Medium (EMEM), 
trypsin-ethylenediaminetetraacetic acid (EDTA), 
penicillin-streptomycin solution, heat-inactivated 
fetal bovine serum (FBS), and L-glutamine we-
re from Capricorn (Ebsdorfergrund, Germany). 
XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)] 
cell proliferation kit was supplied by Biological 
Industries (Kibbutz Beit-Haemek, Israel). ELI-
SA kits were purchased from Sunred Biological 
Technology Co., Ltd (Shanghai, China). Primers 
were synthesized from Macrogen Corp (Seoul, 
South Korea). Total RNA isolation kit was from 
Thermo Scientific (Waltham, MA, United States). 
The one-step EvaGreen qRT-PCR kit was from 
SNP Biotechnology (Ankara, Turkey). BCA total 
protein kit was from Serva (Heidelberg, Ger-
many). HSP90 expression plasmid was synthesi-
zed from Biomatik (Ontario, Canada). 

Figure 1. Schematic representation of the interaction of 
BIIB021 with HSP90 NTD.
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XTT Assay
HeLa cells were cultured in EMEM medium 

containing 10% FBS, 1% L-glutamine, 100 IU/
mL penicillin, and 10 mg/mL streptomycin at 
37ºC in a humidified atmosphere of 95% air and 
5% CO2. The cells were plated at a density of 
2×105 cells/well in 96-well plates. After overnight 
incubation, the cells were treated with different 
concentrations of BIIB021 (100 nM, 50 nM, 25 
nM, 12.5 nM, 6.25 nM, 3.125 nM, 1.5625 nM), 
and the cells were cultured for further 48 h. After 
48 h incubation, a colorimetric XTT cell proli-
feration kit was applied according to the manu-
facturer’s protocol. The absorbance was measured 
at 450 nm using an ELISA reader (Santa Clara, 
CA, USA) and the inhibitory concentration (IC)50 
value of BIIB021 was calculated with GraphPad 
Prism 8.0 software (La Jolla, CA, USA).

Expression and Purification of HSP90
Human HSP90 gene-inserted plasmid DNA was 

transformed into BL21 Star™(DE3) cells, and they 
were spread on Lysogeny Broth-Agar (LB-Agar) 
plates containing ampicillin. The single colony 
on plates was selected, and cells were grown 
in 10 ml of LB solution overnight. Mini-culture 
was transferred were into 1 L of LB containing 
ampicillin and protein expression was induced by 
isopropyl-β-D-thiogalactoside (IPTG). After in-
cubation, the cells were harvested and lysed by 
ultrasonicator in buffer solution (pH 7.4, 20 mM 
sodium phosphate, 0.5 M NaCl, 5 mM imidazole). 
HSP90 was purified by affinity chromatography 
using nickel-nitrilotriacetic acid (Ni-NTA) resin. 

ATPase Assay
The inhibition of ATPase activity of HSP90 

with BIIB021 was determined by coupled en-
zyme assay (pyruvate kinase/lactate dehydro-
genase)31. Recombinant HSP90 protein (10 μg/
μl) was incubated at 37°C for 5 minutes in 500 
μl of buffer solution [pH 7.4, 50 mM 4-(2-hy-
droxyethyl)-1-piperazineethanesulfonic acid 
(HEPES), 50 mM NaCl, 4 mM MgCl2, 0.2 mM 
NADH, 0.5 mM phosphoenolpyruvate, 18 Unit 
lactate dehydrogenase (LDH), 24 Unit pyruvate 
kinase/1 ml]. IC50 dose of BIIB021 (14.79 nM) 
and 0.5 mM ATP were added to the mixture, and 
the formation of adenosine diphosphate (ADP) 
from ATP was measured at 340 nm. 

Luciferase Aggregation Assay 
The effect of BIIB021 on HSP90 chaperone 

activity was determined by luciferase aggregation 

assay31. Luciferase was denatured using urea and 
diluted with buffer solution (pH: 7.4, 25 mM HE-
PES, 50 mM KCl, 5 mM MgCl2, 2 mM ATP, and 
5 mM dithiothreitol). HeLa cell lysate (cell lysate 
contains HSP90 and its co-chaperones) was ad-
ded to the reaction mixture. To increase HSP90 
chaperone activity, ATP and recombinant HSP90 
were added to cell lysate-containing reaction 
mixture and the IC50 dose of BIIB021 (14.79 nM) 
was applied to the mixture for monitoring the 
inhibition of HSP90 luciferase reactivation. The 
level of reactivated luciferase aggregates was 
measured spectrometrically at 320 nm.  

Determination of BAX, BCL-2, CYT-c, and 
CAS-3 Gene Expression

The gene expression levels of the BAX, BCL-2, 
CYT-c, and CAS-3 were determined in BIIB021-tre-
ated HeLa cells. HeLa cells were exposed to IC50 
dose of BIIB021 (14.79 nM) for 48 h and total RNA 
was extracted using a commercial kit according to 
the manufacturer’s instructions. The concentrations 
of the RNA samples were measured using the na-
nodrop instrument. Then, the reverse transcription 
polymerase chain reaction (RT-PCR) experiment 
was set up with BAX, BCL-2, CYT-c, and CAS-3 
primers using a one-step EvaGreen qRT-PCR kit. 
GAPDH was used as a housekeeping gene. The 
sequences primers of human BAX, BCL-2, CYT-c, 
CAS-3, and GAPDH were as follows: BAX sense, 
5’-TCAGGATGCGTCCACCAAGAAG-3’ and an-
tisense, 5’-TGTGTCCACGGCGGCAATCATC-3’; 
BCL-2 sense, 5’-ATCGCCCTGTGGATGACTGA-
GT-3’  and antisense,  5’-GCCAGGAGAAATCA-
AACAGAGGC-3’; CYT-c sense, 5’-CGTTGTGC-
CAGCGACTAAAAA-3’ and antisense, 5’-GATT-
TGGCCCAGTCTTGTGC-3’;  CAS-3  sense, 
5’-ACATGGAAGCGAATCAATGGACTC-3’ and 
antisense, 5’-AAGGACTCAAATTCTGTTGC-
CACC-3’; GAPDH sense, 5’-GTCTCCTCTGACT-
TCAACAGCG-3’ and antisense, 5’-ACCACCCT-
GTTGCTGTAGCCAA-3’. Briefly, PCR reactions 
were amplified for 1 cycle: 50°C for 30 min, 1 
cycle: 95°C for 3 min, and 40 cycles: 95°C for 15 
s. and 60°C for 1 min. PCR amplification was per-
formed in a final volume of 25 μL using the Roche 
Light Cycler 480 instrument (Rotkreuz, Switzer-
land). The relative expression level of genes was 
calculated using the 2-ΔΔCt method. 

Determination of BAX, BCL-2, CYT-c, and 
CAS-3 Protein Expression

To analyze the protein expression levels of the 
BAX, BCL-2, CYT-c, and CAS-3 in treated HeLa 
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cells with IC50 values of the BIB021 (14.79 nM), 
commercial ELISA kits were used. After treat-
ment, HeLa cell lysate was prepared using radio-
immunoprecipitation assay (RIPA) lysis buffer, 
and the protein concentration of cell lysates was 
measured using a BCA protein assay kit. The 
cells BAX, BCL-2, CYT-c, and CAS-3 protein 
levels were measured using human ELISA kits 
and were performed according to the manufactu-
rer’s instructions. The protein level of the control 
group was accepted as 100%, and the results of 
the BIIB021 group were determined as a percen-
tage compared to the control group.

Statistical Analysis
Statistical analysis and comparable data groups 

were assessed using GraphPad Prism 7.0 (Boston, 
MA, USA) software by Student’s t-test and one-
way ANOVA test. Probability values of p<0.05 
were considered to be statistically significant.

Results

XTT Assay
The anticancer activity of BIIB021 was tested 

on the human cervical cancer cell line (HeLa) by 
XTT cell proliferation assay. IC50 value of BIIB021 
was calculated to be 36.15 nM and 14.79 nM on the 
HeLa cell line at 24 h and 48 h, respectively. As 
shown in Figure 2, BIIB021 decreased HeLa cell 
proliferation in a time and dose-dependent manner. 

ATPase Assay
To investigate the inhibitory effect of the IC50 

dose of BIIB021 on the ATPase function of HSP90, 
an ATP hydrolysis experiment was performed. As 
shown in Figure 3, the IC50 dose of BIIB021 drama-
tically decreased the ATP hydrolysis rate of HSP90. 

Luciferase Aggregation Assay
The inhibitory effect of BIIB021 on the cha-

perone activity of HSP90 was evaluated using a 
luciferase aggregation assay. Refolding level of 
denatured luciferase by HSP90 was measured in 
HeLa cells treated with BIIB021. In this assay, 
cell lysate showed weak refolding activity of 
HSP90, and the addition of ATP in the reaction 
mixture increased the refolding of denatured luci-
ferase. However, the IC50 dose of BIIB021 decre-
ased the luciferase refolding activity of HSP90 in 
the presence of ATP (Figure 4). 

Determination of BAX, BCL-2, CYT-c, and 
CAS-3 Gene and Protein Expression in 
HeLa Cells

To understand the cytotoxicity mechanism of 
the BIIB021, the alteration of expression levels 
of the apoptosis-related markers (BAX, BCL-2, 
CYT-c, and CAS-3) were determined by RT-
PCR and ELISA experiments in the HeLa cell 
line (Figure 5 and Figure 6). The mRNA and 
protein levels of the BAX and CYT-c increased 
in HeLa cells after exposure to the BIIB021. 
When cervical cancer cells were treated with 

Figure 2. XTT cell proliferation result of BIIB021 in HeLa cell line. IC50 doses of BIIB021 were calculated to be 36.15 nM and 
14.79 nM on HeLa cell line at 24 h and 48 h, respectively. Vertical bars indicate the standard deviation. Values are expressed 
mean±SEM (n>3).
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the IC50 value of BIIB021, the protein expression 
of CAS-3 significantly increased, while no stati-
stically significant change was observed in the 
mRNA expression level.

Discussion

Overexpression of HSP90 suppresses apoptotic 
pathways for stimulation of cancer cell proliferation. 
Therefore, the inhibition of HSP90 activity has been 
a significant strategy in cancer treatment. BIIB021 

is a fully synthetic orally available HSP90 inhibi-
tor that interacts with the ATP binding region of 
HSP90, resulting in HSP90 chaperone dysfunction 
in cancer cells11,15,22. In the current study, the apop-
totic inducer role of BIIB021 was evaluated on a 
human cervical cancer cell line (HeLa) with assays. 

In the literature, the anticancer potential of BI-
IB021 has been evaluated against a wide variety 
of cancer types. Lundgren et al29 reported that 
BIIB021 exhibited an antiproliferative effect on 
human breast cancer (BT474 and MCF-7), gastric 
cancer (N87), colon cancer (HT-29), non-small 

Figure 3. Measurement of HSP90 ATPase activity in the presence of BIIB021. Values are expressed mean±SEM (n>3). 
***p<0.001 compared to control.

Figure 4. Luciferase aggregation assay in the presence of BIIB021. Values are expressed mean±SEM (n>3). **p<0.01, 
****p<0.0001 compared to control.
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cell lung cancer (H1650 and H1299), and small 
cell lung cancer (H69 and H82) cell lines with 
IC50 value ranging from 60 nM to 310 nM. In 
another study32, BIIB021 decreases Eca109 and 
Eca9706 (esophageal squamous cell carcinoma) 
cell proliferation with IC50 values of 661.10 nM 
and 53.31 nM, respectively. Kim et al33 investiga-
ted the cytotoxic potential of BIIB021 on human 
thyroid carcinoma cells (TPC-1 and SW1736). 
Administration of cells with BIIB021 at 10 µM 
exhibited significant toxicity against TPC-1 and 
SW1736 cell lines. According to these toxicity va-
lues, BIIB021 effectively decreased proliferation 
at the nM level in HeLa cervical cancer cell line.

HSP90 requires ATP hydrolysis energy to 
provide proper folding of oncogenic client pro-
teins. HSP90 is a dimeric protein, and its crystal 
structure is similar to the letter “V” (open confor-
mation) in the absence of ATP. In this state, on-
cogenic client proteins interact with hydrophobic 
residues in the interior of MD for proper folding. 

Hydrolysis of ATP in the NTD triggers the chan-
ge of the open conformation of HSP to the closed 
conformation. After the dimerization of CTD, 
the nascent substrate protein acquires its proper 
folded structure. Therefore, designing an inhibi-
tor with a higher affinity for the ATP binding site 
of HSP90 than ATP is an important therapeutic 
approach in cancer treatment. This assay suppor-
ts that BIIB021 is a potent HSP90 inhibitor by 
inhibiting ATP hydrolysis function34,35.

In the literature, BIIB021 inhibited luciferase 
refolding across lung cancer (A549), colon cancer 
(HCT116), and prostate cancer (PC3-MM2) cell 
lines in the range of 40-70 nM. Furthermore, 
NVP-AUY922 (a highly potent HSP90 inhibitor) 
exhibited inhibition of luciferase refolding in 
A549 and PC3-MM2 cells at around 500 nM and 
60 nM, respectively36. Geldanamycin is the first 
natural HSP90 inhibitor that prevented refolding 
of luciferase at a concentration of about 200 nM37. 
Compared to these results, the low concertation 

Figure 5. The effect of BIIB021 on level of apoptosis related gene expressions in HeLa cells. Alteration of mRNA levels of 
BAX (A), BCL-2 (B), CYT-c (C), and CAS-3 (D) were determined by using RT-PCR analysis. Values are expressed mean±SEM 
(n>3). ***p<0.001, ****p<0.0001 compared to control and ns: not significant.
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of BIIB021 (14.79 nM) inhibited luciferase re-
folding activity in HeLa cells in the presence of 
ATP. It should be noted that BIIB021 is a highly 
potent HSP90 inhibitor in HeLa cells, according 
to luciferase aggregation assay. 

Avoidance of apoptosis is a vital biological 
process for the survival of cancerous cells, regar-
dless of cancer type. Therefore, the main mecha-
nism of many anticancer drugs is the activation 
of apoptotic signaling pathways in cancer cells. 
Basically, stimulation of pro-apoptotic markers 
and inhibition of anti-apoptotic markers involved 
in intrinsic pathways have been significant ap-
proaches for cancer drug design38,39. The intrin-
sic mechanism of apoptosis is mainly regulated 
by the mitochondria. The pro-apoptotic proteins 
[BCL-2 associated X (BAX), BCL-2 antagonist/
killer (BAK), BH3 interacting domain death ago-
nist (BID), BCL-2 family apoptosis regulator 
(BOK), etc.] provide disruption of mitochondrial 
outer membrane permeability (MOMP), resulting 

in the release of CYT-c into the cytosol. Then, 
CYT-c binds to the apoptotic protease activa-
ting factor 1 (APAF-1) to form an apoptosome 
complex. The apoptosome activates CAS-9 to 
initiate the CAS-3-dependent proteolytic casca-
de. The antiapoptotic proteins, including BCL-2, 
inhibit disruption of MOMP by interacting with 
pro-apoptotic proteins. The upregulation of BCL-
2 promotes cancer cell survival by abrogating 
apoptosis. Therefore, the inhibition of BCL-2 and 
activation of BAX is known as significant mole-
cular mechanisms to provoke intrinsic apoptotic 
pathways in cancer cells40-42.

HSP90 is accepted as an important progno-
stic factor in cancer cells and is closely related 
to the intrinsic apoptotic pathway. Overexpres-
sion of HSP90 prevents caspase activation and 
inhibits apoptotic pathways in different cellular 
models. Particularly, HSP90 controls intrin-
sic apoptotic pathways in tumors by regula-
ting mitochondrial membrane permeabilization 

Figure 6. The effect of BIIB021 on level of apoptosis related protein expressions in HeLa cells. Alteration of protein levels of 
BAX (A), BCL-2 (B), CYT-c (C), and CAS-3 (D) were determined by using RT-PCR analysis. Values are expressed mean±SEM 
(n>3). **p<0.01, ***p<0.001 compared to control.
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and CYT-c release. Many experimental stu-
dies16,43-45. reported that the interaction between 
HSP90 and BCL-2 blocks the up-regulation of 
pro-apoptotic factors and prevents the release of 
CYT-c by the inactivation of CAS-3. Therefore, 
inhibition of HSP90 provokes an intrinsic apop-
totic pathway in tumor cells

The apoptotic potential of BIIB021 and other 
HSP90 inhibitors has been extensively evalua-
ted in many experimental studies18,45-48. Li et 
al45 investigated the anticancer activity of BI-
IB021 against human T-cell acute lymphoblastic 
leukemia cells (Molt-4). BIIB021 inhibited the 
proliferation of Molt-4 cells and stimulated apop-
totic cell death via caspase activation. In another 
study46, the anticancer potential of Debio-0932 
(next-generation HSP90 inhibitor) was investiga-
ted against human breast cancer cell lines (MCF-
7 and MDA-MB-231). Debio-0932 triggered the 
intrinsic apoptotic pathway by increasing the 
expression ratio of BAX/BCL-2 in these cancer 
cell lines. STA-9090 (a potent small-molecule 
inhibitor of HSP90) prevented MDA-MB-231 cell 
proliferation via up-regulation of apoptotic mar-
kers poly(ADP-ribose) polymerase (PARP) and 
BCL-2-like protein 11 (BIM)47. According to all 
these results, next-generation HSP90 inhibitors 
exhibit great potential for stimulating apoptotic 
cell death pathways in cancer cells. 

Conclusions

In conclusion, BIIB021 interrupted the chape-
rone function of HSP90 by inhibiting the ATPase 
process. BIIB021 decreased HeLa cell prolife-
ration by inducing intrinsic apoptotic pathways. 
BIIB021 provided down-regulation of BCL-2 and 
increased the expression of BAX, CYT-c, and 
CAS-3 in cervical cancer cells. These results sug-
gest a promising anticancer activity of BIIB021 
against human cervical cancer cells.
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