A study of serum proteome expression in patients with severe hand-foot-mouth disease

F.-Y. ZHOU, Y.-P. LUO, G.-J. ZHANG, M. HUANG

Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu University of T.C.M, Chengdu, Sichuan, China

Abstract. – **OBJECTIVE:** Although numerous studies have been conducted on hand-footmouth disease (HFMD), the diagnosis of severe HFMD has not been fully clarified. Hence, it is important to further clarify the diagnosis of severe HFMD. In this study, we conducted a clinical biomarker discovery in patients with severe HFMD.

PATIENTS AND METHODS: In this study, serum samples were isolated from severe HFMD, HFMD, and healthy controls. Each group consisted of 32 cases. Isobaric tagging for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect proteome expression in the serum samples. Then, candidate proteins were screened and verified by ELISA. Protein expressions were significantly different between the HFMD group, severe HFMD group, and healthy control group.

RESULTS: Comparison of the proteins between the three groups showed that serum amyloid A-1 protein (P0DJ18), C-reactive protein (P02741), fibronectin (P02751), plasminogen (P00747) and apolipoprotein A (P08519) were different, so they were selected as candidate proteins. However, the results of ELISA showed that the expression levels of serum amyloid A-1 protein, C-reactive protein, fibronectin, and apolipoprotein a in the severe HFMD group were significantly different from those in the other two groups (p<0.05).

CONCLUSIONS: In conclusion, the results showed that serum amyloid A-1, C-reactive protein, fibronectin, and apolipoprotein A may be potential biomarkers for clinical diagnosis of severe HFMD.

Key Words:

Severe hand-foot-mouth disease, Protein expression, iTRAQ combined with MS.

Introduction

Hand-foot-mouth disease (HFMD) is an infectious disease, usually characterized by fever, oral vesicles, and rashes on the hands, feet, and buttocks¹. In the past decade, large outbreaks of HFMD in children under five years of age have occurred in some provinces of China^{2,3}, which has become one of the main childhood diseases⁴. Enterovirus 71 (EV71) is the main pathogenic virus causing HFMD. The infection of EV71 is positively correlated to high mortality and incidence rate⁵.

Severe HFMD is a major problem worldwide, which causes a heavy burden on children's health and society⁶. The clinical manifestations of severe HFMD include aseptic encephalitis, brainstem encephalitis, myelitis, myocarditis, and pulmonary edema, which cause mortality⁷. However, the degree of HFMD and the causes of severe HFMD remain unclear. Some researchers regard HFMD as the precursor to severe HFMD, and 5% of HFMD cases will progress to severe HFMD without proper diagnosis^{8,9}.

HFMD is caused by an enterovirus, and different proteins are expressed between HFMD and severe HFMD¹⁰. Comparative studies between HFMD and severe HFMD may be helpful for further understanding the pathogenesis and biomarkers of HFMD and severe HFMD¹¹. Proteomics is a post-genomic biotechnology¹². Isobaric tagging for relative and absolute quantitation (iTRAQ) is a powerful proteomics technology for protein expression research, which is used for the relative and absolute quantitative detection of proteins. It has many advantages, and the biggest advantage is that it can observe the differences between multiple proteins in a single test compared to traditional experiments¹³. We performed a preliminary study on protein expression differences between HFMD, severe HFMD, and healthy controls by iTRAQ-LC-MS/MS analysis¹⁴. Then, we screened candidate proteins by enrichment analysis and tested them with ELISA.

Patients and Methods

Participants

Healthy children were randomly selected from the physical examination center of Chengdu Fifth People's Hospital as the healthy control group (HC). Patients with HFMD and severe HFMD diagnosed in the pediatric outpatient department of Chengdu Fifth People's Hospital between January 2022 and November 2022 were included in the HFMD and severe HFMD groups, respectively. The diagnostic criteria of HFMD and severe HFMD were from WS-588-2018 diagnosis for HFMD. Severe HFMD is defined as a case of neurological complications such as aseptic meningitis, encephalitis, acute flaccid paralysis, pulmonary edema, or cardiopulmonary failure. The study was approved by the Medical Ethics Committee of the Chengdu Fifth People's Hospital and fully complied with the Helsinki Declaration. Written consent from the parents of all study participants was obtained before any procedure.

Clinical Characteristics

We retrospectively analyzed the clinical characteristics of 64 children with HFMD. The pathogens of 64 patients were confirmed by RT-PCR. The clinical manifestations of these 64 children were mainly rash, fever, lethargy, eclampsia, headache, and restlessness.

iTRAQ-LC-MS/MS Analysis and Identification of Serum Proteins

5 ml of peripheral venous blood was extracted from the children. After centrifugation, the serum was separated, and the proteins in the serum were analyzed and identified by iTRAO-LC-MS/MS. Protein concentration was detected by BCA Protein Assay Kit (Sangon Biotech, Shanghai, PR China). iTRAQ labeling was carried out according to the manufacturer's protocol (Sciex, Massachusetts, USA). Each sample was individually marked with two of the eight available labels. All labeled peptides were collected. The Ultimate 3000 HPLC system (Dionex, CA, USA) equipped with a 2.00-mm-inner diameter 100-mm-long Gemini-NX 3u C18110A columns (Phenomenex, CA, USA) was used in high-pH fractionation. The peptide was loaded onto the column and washed with equal proportions under 95% eluent A (20 mmol HCOONH4, 2mole NaOH) (pH 10). The peptide was graded linearly by binary gradient using 15-50% B solution (20 mmol HCOONH4, 2 mole NaOH, 80% CAN) (pH 10) at 0.2 ml/min over 45 min. Finally, the column was washed under 90% solution B for 10 minutes and reverted to 95% solution A for 10 minutes. The wavelength of the UV detector was set at 214/280 nm, and the separation solu-

tion was collected every minute. A total of 10 fractions were collected and dried in a vacuum centrifuge for subsequent nano-reverse liquid chromatography (nano-LC) classification. Each fraction was resuspended in a loading buffer (0.1% FA, 2% ACN) and separated using an Ultimate 3000 nano-LC system equipped with a C18 reverse phase column (100 µm inner diameter, 10 cm long, 3 µm resin from Michrom Bioresources, Auburn, CA, USA). The peptides were separated. Then, LC eluate was collected from TripleTOF 5600 MS/MS system (AB SCIEX, CA, USA) in information-dependent collection mode. In the high-resolution mode (>30,000), the MS spectrum was collected in the mass range of 400-1250 m/z using the cumulative time of 250 ms for each spectrum. Each cycle selected up to 20 precursors for fragmentation from each MS spectrum. The minimum accumulation time of each precursor was 100 ms, and the dynamic elimination time was 20 s.

Relative quantification and protein identification were performed with ProteinPilotTM software (version 5.0, Applied Biosystems, CA, USA) using the ParagonTM algorithm (Applied Biosystems, CA, USA) as the search engine. Specify processing included quantitate, bias correction, and background correction. All proteins identified must have \geq 95% confidence and the protein confidence threshold cut-off was set to 1.3 (unused) with at least more than one peptide above the 95% confidence level. To designate significant changes in protein expression, fold-changes <1.5 were set as cut-off values.

Candidate Protein Verification by ELISA

We quantitatively detected the expression levels of candidate proteins in the serum samples of the three groups by ELISA using Human-LRG1/ SAA1 ELISA kit (Catalog No.: ab260066, ab100635, Abcam, Cambridge, UK) and Human Fibronectin ELISA kit (Catalog No.: ab219046, Cambridge, UK). HITACHI 7100 was used for the c-reactive protein(CRP) and Apolipoprotein tests.

Statistical Analysis

Normal distribution data was expressed as the mean \pm standard deviation ($\chi \pm$ SD). Data were evaluated by GraphPad Prism 9.0 software (GraphPad Prism Software, CA, USA). Analysis of variance (ANOVA) was used for comparisons between groups. Two-way ANOVA was used for compar-

isons between the three groups. A p-value <0.05 was considered statistically significant.

Results

Clinical Characteristics of Individuals in Each Group

The clinical characteristics of patients in each group are summarized in Table I.

iTRAQ-LC-MS/MS Analysis

The protein expressions of the HFMD group, severe HFMD group, and healthy controls (HC) group were compared and analyzed. A total of 507 proteins were identified, among which we selected those with ratios of >1.5. The results showed that 46 proteins were up-regulated and 43 proteins were down-regulated between the HFMD and HC groups (Table II). Moreover, 36 proteins were up-regulated, and 39 proteins were down-regulated between the severe HFMD and HC groups (Table III). Furthermore, 13 proteins were up-regulated between the severe HFMD and HC groups (Table III). Furthermore, 13 proteins were down-regulated between the severe HFMD and HC groups (Table III). Furthermore, 14 proteins were down-regulated between the severe HFMD and HFMD groups (Table IV).

Candidate Protein Selection

Gene Ontology (GO) analysis showed that the proteins were mainly located in the extracellular region, and their primary molecular functions were ion binding, enzyme regulation activity, peptidase activity, and lipid binding. Comparing the protein expression between the severe HFMD, HFMD, and control groups, we screened six proteins (Leucine-rich alpha-2-glycoprotein, Serum amyloid A-1 protein, C-reactive protein, Fibronectin, Plasminogen, and Apolipoprotein A) as candidate proteins, which passed the ELI-SA validation test.

ELISA for Candidate Protein Verification

The ELISA results (Figure 1) showed that the levels of SAA1 and CRP were higher in the severe HFMD group compared to the HFMD group (p<0.05) and the HC group (p<0.05). The levels of Fn and Apo A proteins were lower in the severe HFMD group compared to the HFMD group (p<0.05) and the HC group (p<0.05). Therefore, serum amyloid A (SAA) and CRP proteins were increased, while Fn and Apo proteins were decreased in the severe HFMD group.

Discussion

Enterovirus is the main pathogen of hand-footmouth disease (HFMD)¹⁵. Enterovirus belongs to the small Reoviridae enterovirus family, which is a single-stranded positive RNA virus¹⁶. The major serotypes that cause this disease include enteroviruses of the Coxsackie virus (CV) group A and B types, as well as some echovirus serotypes, and enterovirus A7117. HFMD is a global infectious disease caused by various enteroviruses, usually occurring in children under 5 years of age¹⁸. In recent years, several major outbreaks of HFMD have occurred in China, a small proportion of which exhibited serious symptoms, such as aseptic meningitis, encephalitis, acute flaccid paralysis, pulmonary edema, myocarditis, and even death¹⁹. To date, the pathogenesis and molecular mechanism of EV71 and CVB infections remain unclear²⁰.

Clinical parameters	HFMD group (n=32)	Sever HFMD group (n=32)	Health control group (n=32)		
Age	2.69	2.75	2.65		
Rash	±	+	-		
Fever	±	+	-		
Lethargy (%)	32.6	51.05	0		
Eclampsia (%)	9.07	21.4	0		
Headache (%)	3.2	16.0	0		
Agitation (%)	4.82	15.55	0		
c-reactive protein (>8 mg/L, n)	2	13	0		
Coxsackievirus A group16 positive rate (%)	37	34	0		
Enterovirus71 positive rate (%)	63	66	0		

Table I. Clinical characteristics of the children.

Accession	List of proteins	Peptides (95%)	Ration >1.5	C.V	Expression
P0C0L4	Complement C4	287	1.522	0.051	up
P00450	Ceruloplasmin	250	2.674	0.36	
B4E1Z4	Uncharacterized protein	131	6.661	0.278	
P00738	Haptoglobin	321	17.38	0.258	
P01011	Alpha-1-antichymotrypsin	132	5.611	0.485	
P10643	Complement component C7	42	3.981	0.232	
P04003	C4b-binding protein alpha chain	48	3.035	0.276	
P05546	Heparin cofactor 2	56	1.762	0.225	
Q06033	Inter-alpha-trypsin inhibitor heavy chain H3	40	1.56	0.169	
P02748	Complement component C9	35	1.901	0.017	
P02763	Alpha-1-acid glycoprotein 1	87	11.999	0.342	
P04278	Sex hormone-binding globulin	24	2.141	0.258	
014791	Apolipoprotein L1	26	1.785	0.11	
Q08380	Galectin-3-binding protein	22	3.119	0.068	
P02671	Fibrinogen alpha chain	20	4.734	0.461	
P02750	Leucine-rich alpha-2-glycoprotein	23	2.392	0.06	
075636	Ficolin-3	22	2.02	0.108	
P0DJI8	Serum amyloid A-1 protein	49	7.846	0.056	
G3XAM2	Complement factor	17	2.0457	0.062	
P08571	Monocyte differentiation antigen CD14	12	1.531	0.119	
P02743	Serum amyloid P-component	15	2.252	0.318	
P19652	Alpha-1-acid glycoprotein 2	48	2.717	0.224	
A0A087WUS7	Ig delta chain C region	13	1.585	0.027	
P01782	Immunoglobulin heavy variable 3-9	28	2.227	0.113	
A0A096LPE2	Protein SAA2-SAA4	43	2.35	0.12	
P02675	Fibrinogen beta chain	6	2.117	0.058	
P02741	C-reactive protein	6	2.374	0.271	
A0A0B4J1Y8	Protein IGLV9-49	4	1.647	0.132	
P20742	Pregnancy zone protein	149	5.532	0.149	
P01700	Immunoglobulin lambda variable 1-47	11	1.905	0.12	
A0A075B6N8	Ig gamma-3 chain C region (Fragment)	43	3.1	0.08	
P69891	Hemoglobin subunit gamma-1	9	1.509	0.163	
P06681	Complement C2	30	1.797	0.052	
A0A0C4DH38	Protein IGHV5-51 (Fragment)	12	2.138	0.289	
P18428	Lipopolysaccharide-binding protein	5	1.936	0.19	
A0A0B4J231	Immunoglobulin lambda-like polypeptide 5	26	1.763	0.457	
C9JEU5	Fibrinogen gamma chain	3	2.123	0.07	
P06732	Creatine kinase M-type	3	2.008	0.113	
A0A075B6K5	HCG2043239 (Fragment)	10	2.461	0.102	
A0A0C4DH29	Immunoglobulin heavy variable 1-3	7	1.572	0.086	
P35573	Glycogen debranching enzyme	1	1.598	0.085	
J3KT10	Nuclear pore complex protein Nup85	1	1.606	0.37	
G5E968	Chromogranin A (Parathyroid secretory protein 1)		1.531	0.428	
A0A0A0MT69	Protein IGKJ4 (Fragment)	1	2.742	0.213	
A0A0B4J231	Immunoglobulin lambda-like polypeptide 5	26	1.763	0.457	
1 10/ 10D TJ 2J 1	minunogiobumi iambua-nke porypeptide 5	20	2.374	0.437	

 Table II. List of proteins differentially expressed between HFMD and HC groups.

Continued

Accession	List of proteins	Peptides (95%)	Ration >1.5	C.V	Expressior
P02751	Fibronectin	153	0.611	0.215	down
P02647	Apolipoprotein A-I	160	0.303	0.278	
P00747	Plasminogen	82	0.543	0.155	
P00734	Prothrombin	77	0.635	0.025	
P06396	Gelsolin	54	0.591	0.231	
P43652	Afamin	44	0.5	0.069	
P07996	Thrombospondin-1	29	0.554	0.117	
P02765	Alpha-2-HS-glycoprotein	91	0.543	0.368	
P35858	Insulin-like growth factor-binding protein complex acid labile subunit	25	0.522	0.093	
P25311	Zinc-alpha-2-glycoprotein	31	0.654	0.248	
V9GYM3	Apolipoprotein A-II	80	0.418	0.275	
P27169	Serum paraoxonase/arylesterase 1	36	0.523	0.155	
P04196	Histidine-rich glycoprotein	24	0.474	0.102	
P02749	Beta-2-glycoprotein 1	20	0.645	0.29	
P04264	Keratin, type II cytoskeletal 1	13	0.653	0.417	
P15169	Carboxypeptidase N catalytic chain	16	0.608	0.029	
P29622	Kallistatin	15	0.658	0.13	
Q5VY30	Retinol binding protein 4, plasma, isoform CRA_b	20	0.601	0.103	
P60709	Actin, cytoplasmic 1	11	0.496	0.028	
P08519	Apolipoprotein(a)	16	0.539	0.123	
P55058	Phospholipid transfer protein	6	0.612	0.065	
P05452	Tetranectin	17	0.581	0.079	
P35527	Keratin, type I cytoskeletal 9	10	0.627	0.053	
K7ER74	Protein APOC4-APOC2	18	0.477	0.13	
P05154	Plasma serine protease inhibitor	7	0.48	0.167	
P01861	Ig gamma-4 chain C region	61	0.459	0.208	
P11021	78 kDa glucose-regulated protein	6	0.59	0.095	
Q15485	Ficolin-2	10	0.568	0.07	
K7ERI9	Apolipoprotein C-I (Fragment)	12	0.504	0.196	
P17936	Insulin-like growth factor-binding protein 3	6	0.371	0.18	
P02042	Hemoglobin subunit delta	24	0.623	0.095	
P40197	Platelet glycoprotein V	3	0.623	0.069	
A0A0C4DGZ8	Glycoprotein Ib (Platelet), alpha polypeptide	4	0.635	0.068	
A0A075B6N7	Ig alpha-2 chain C region (Fragment)	29	0.534	0.252	
P07737	Profilin-1	2	0.585	0.091	
J3KPA1	Cysteine-rich secretory protein 3	4	0.65	0.075	
P62834	Ras-related protein Rap-1A	3	0.506	0.079	
A0A075B7D0	Protein IGHV1OR15-1 (Fragment)	5	0.617	0.055	
Q92859	Neogenin	1	0.5	0.338	
H9KV75	Alpha-actinin-1	1	0.291	0.05	
P08514	Integrin alpha-IIb	1	0.65	0.155	
E7EX29	14-3-3 protein zeta/delta (Fragment)	1	0.479	0.019	
F5H7S3	Tropomyosin alpha-1 chain	1	0.517	0.03	

 Table II (Continued).
 List of proteins differentially expressed between HFMD and HC groups.

Accession	List of proteins	Peptides (95%)	Ration >1.5	C.V	Expression
P00450	Ceruloplasmin	250	1.976	0.417	up
B4E1Z4	Uncharacterized protein	131	8.523	0.254	
P00738	Haptoglobin	321	15.233	0.279	
P01011	Alpha-1-antichymotrypsin	132	7.413	0.465	
P10643	Complement component C7	42	4.151	0.245	
P04003	C4b-binding protein alpha chain	48	3.265	0.293	
Q06033	Inter-alpha-trypsin inhibitor heavy chain H3	40	1.729	0.15	
P02748	Complement component C9	35	2.094	0.026	
P02763	Alpha-1-acid glycoprotein 1	87	14.232	0.298	
B4DPQ0	Complement C1r subcomponent	33	1.556	0.02	
P04278	Sex hormone-binding globulin	24	2.057	0.126	
Q08380	Galectin-3-binding protein	22	2.824	0.093	
P02671	Fibrinogen alpha chain	20	2.173	0.494	
P00748	Coagulation factor XII	21	2.023	0.205	
P02750	Leucine-rich alpha-2-glycoprotein	23	3.87	0.13	
075636	Ficolin-3	22	1.562	0.115	
PODJI8	Serum amyloid A-1 protein	49	13.95	0.085	
G3XAM2	Complement factor I	17	2.192	0.064	
P00742	Coagulation factor X	15	1.603	0.181	
P02743	Serum amyloid P-component	15	3.264	0.296	
P19652	Alpha-1-acid glycoprotein 2	48	3.029	0.273	
P01782	Immunoglobulin heavy variable 3-9	28	1.717	0.198	
G3V2W1	Protein Z-dependent protease inhibitor	10	1.73	0.191	
A0A096LPE2	Protein SAA2-SAA4	43	2.343	0.15	
P02741	C-reactive protein	6	5.601	0.246	
A0A0B4J1Y8	Protein IGLV9-49	4	1.968	0.181	
P20742	Pregnancy zone protein	149	2.225	0.171	
P01700	Immunoglobulin lambda variable 1-47	11	1.673	0.142	
A0A075B6N8	Ig gamma-3 chain C region (Fragment)	43	2.412	0.142	
P30447	HLA class I histocompatibility antigen, A-23 alpha chain	3	3.053	0.148	
P06681	Complement C2	30	1.507	0.096	
P18428	Lipopolysaccharide-binding protein	5	2.646	0.187	
P06732	Creatine kinase M-type	3	2.64	0.057	
P35573	Glycogen debranching enzyme	1	1.507	0.029	
A0A0A0MT69	Protein IGKJ4 (Fragment)	1	2.925	0.101	
P02741	C-reactive protein	6	5.601	0.246	

Table III. List of proteins differentially expressed between sever HFMD and HC groups.

Continued

The occurrence of hand-foot-mouth disease has a clear seasonal pattern, the peak period usually occurs from April to July^{21,22}. Hence, it is meaningful to monitor the incidence of HFMD during the epidemic period, especially for distinguishing critically ill patients as soon as possible. In order to better control and prevent possible severe HFMD, the use of a biomarker to diagnose severe hand, foot, and mouth disease can improve the diagnostic accuracy of hand, foot, and mouth disease^{23,24}. Isobaric tagging for relative and absolute quantitation (iTRAQ) is a helpful proteomic technology for biomarker identification²⁵. The iTRAQ technology is high throughput and can identify differentially expressed proteins between different groups²⁶. Combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), iTRAQ has been used to identify specific biomarkers in some diseases²⁷.

In recent years, deeper insights into the mechanisms underlying the pathogenesis of severe

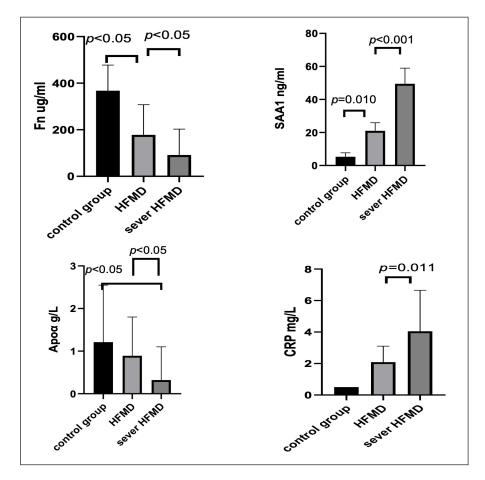
Accession	List of proteins	Peptides (95%)	Ration >1.5	C.V	Expressior
P02751	Fibronectin	153	0.307	0.24	down
P02647	Apolipoprotein A-I	160	0.38	0.25	
P00747	Plasminogen	82	0.322	0.419	
P01042	Kininogen-1	111	0.651	0.259	
P43652	Afamin	44	0.616	0.215	
P07996	Thrombospondin-1	29	0.404	0.089	
P35858	Insulin-like growth factor-binding protein complex acid labile subunit	25	0.528	0.08	
P68871	Hemoglobin subunit beta	44	0.497	0.032	
P04196	Histidine-rich glycoprotein	24	0.563	0.134	
P02749	Beta-2-glycoprotein 1	20	0.658	0.287	
P36955	Pigment epithelium-derived factor	19	0.631	0.057	
P29622	Kallistatin	15	0.542	0.142	
Q5VY30	Retinol binding protein 4, plasma, isoform CRA_b	20	0.459	0.116	
P00739	Haptoglobin-related protein	125	0.386	0.28	
P60709	Actin, cytoplasmic 1	11	0.353	0.011	
A0A0C4DFP6	Cartilage acidic protein 1	10	0.555	0.131	
P08519	Apolipoprotein(a)	16	0.165	0.171	
K7ER74	Protein APOC4-APOC2	18	0.434	0.225	
P05154	Plasma serine protease inhibi-tor	7	0.358	0.194	
P11021	78 kDa glucose-regulated pro-tein	6	0.619	0.122	
Q15485	Ficolin-2	10	0.657	0.071	
K7ERI9	Apolipoprotein C-I (Fragment)	12	0.472	0.149	
P17936	Insulin-like growth factor-binding protein 3	6	0.321	0.102	
P06312	Immunoglobulin kappa varia-ble 4-1	15	0.585	0.231	
P69891	Hemoglobin subunit gamma-1	9	0.624	0.145	
P02042	Hemoglobin subunit delta	24	0.581	0.162	
Q6UXB8	Peptidase inhibitor 16	3	0.649	0.043	
P40197	Platelet glycoprotein V	3	0.622	0.01	
A0A0C4DGZ8	Glycoprotein Ib (Platelet), al-pha polypeptide	4	0.615	0.105	
P07737	Profilin-1	2	0.467	0.092	
J3KPA1	Cysteine-rich secretory protein 3	4	0.637	0.075	
P62834	Ras-related protein Rap-1A	3	0.518	0.09	
X6RJP6	Transgelin-2 (Fragment)	1	0.616	0.14	
H9KV75	Alpha-actinin-1	1	0.358	0.004	
P08514	Integrin alpha-Iib	1	0.621	0.159	
E7EX29	14-3-3 protein zeta/delta (Fragment)	1	0.442	0.049	
Q9HCU0	Endosialin	1	0.594	0.121	
Q12907	Vesicular integral-membrane protein VIP36	1	0.578	0.499	
F5H7S3	Tropomyosin alpha-1 chain	1	0.579	0.133	

Table III (Continued). List of proteins differentially expressed between sever HFMD and HC groups.

HFMD have been achieved due to the rapid advances in molecular diagnostics^{28,29}. Although prompt treatment is important, successful outcome and improvement in overall survival is often impeded by a delay in diagnosis because of the heterogeneity of the syndrome, the variable clinical manifestations, and the lack of specificity of clinical and laboratory results. The serum is a good source of protein biomarkers and can reflect the physiological or pathological state of the human body. Rich secretion factors can be observed in serum, making it a highly reliable sample for disease-related biomarkers³⁰⁻³².

In this study, we used iTRAQ to identify four serum proteins that were significantly differentially expressed between the HFMD group, se-

Accession	List of proteins	Peptides (95%)	Ration >1.5	C.V	Expression
Q14624	Inter-alpha-trypsin inhibitor heavy chain H4	149	1.621	0.062	up
P00734	Prothrombin	77	1.617	0.146	
P01876	Ig alpha-1 chain C region	78	1.931	0.091	
P27169	Serum paraoxonase/arylesterase 1	36	2.089	0.094	
P02750	Leucine-rich alpha-2-glycoprotein	23	1.62	0.131	
P0DJI8	Serum amyloid A-1 protein	49	1.999	0.116	
Q96KN2	Beta-Ala-His dipeptidase	9	1.779	0.207	
P01861	Ig gamma-4 chain C region	61	2.685	0.192	
P02741	C-reactive protein	6	2.515	0.198	
P30447	HLA class I histocompatibility antigen, A-23 alpha c	hain 3	2.434	0.079	
P14780	Matrix metalloproteinase-9	1	1.678	0.259	
Q99592	Zinc finger and BTB domain-containing protein 1	8 1	3.232	0.254	
P02741	C-reactive protein	6	2.515	0.198	
P02751	Fibronectin	153	0.499	0.181	down
P00747	Plasminogen	82	0.582	0.425	
P05546	Heparin cofactor 2	56	0.502	0.111	
P01857	Ig gamma-1 chain C region	82	0.382	0.134	
014791	Apolipoprotein L1	26	0.526	0.058	
P68871	Hemoglobin subunit beta	44	0.578	0.043	
P02671	Fibrinogen alpha chain	20	0.437	0.14	
Q16610	Extracellular matrix protein 1	14	0.496	0.297	
P00739	Haptoglobin-related protein	125	0.5	0.276	
P08519	Apolipoprotein(a)	16	0.294	0.14	
A0A087WUS7	Ig delta chain C region	13	0.489	0.048	
P02675	Fibrinogen beta chain	6	0.511	0.074	
A0A075B6K4	HCG2043238 (Fragment)	6	0.626	0.065	
P20742	Pregnancy zone protein	149	0.37	0.046	
P06312	Immunoglobulin kappa varia-ble 4-1	15	0.558	0.099	
P69891	Hemoglobin subunit gamma-1	9	0.423	0.121	
A0A0C4DH38	Protein IGHV5-51 (Fragment)	12	0.64	0.049	
A0A0B4J231	Immunoglobulin lambda-like polypeptide 5	26	0.605	0.101	
C9JEU5	Fibrinogen gamma chain	3	0.429	0.078	
A0A075B6K5	HCG2043239 (Fragment)	10	0.57	0.075	
A0A0J9YVT0	Immunoglobulin heavy varia-ble 3-33 (Fragment)	23	0.591	0.193	
Q12907	Vesicular integral-membrane protein VIP36	1	0.517	0.098	
A0A0B4J231	Immunoglobulin lambda-like polypeptide 5	26	0.605	0.101	


Table IV. List of proteins differentially expressed between sever HFMD and HFMD groups.

vere HFMD group, and healthy control group. We used String network analysis to determine their various possible interactions. Then, we used ELISA to quantitatively detect these proteins. We compared the levels of SAA and CRP proteins in three groups and found that the levels of SAA and CRP in the serum of patients with severe HFMD were significantly higher (p<0.05), consistent with iTRAQ-LC-MS/MS analysis. We found that the levels of Fn and Apo A proteins were significantly lower in the severe HFMD pa-

tients (p<0.05), also consistent with iTRAQ-LC-MS/MS analysis. This study showed that serum SAA, CRP, Fn, and Apo might be biomarkers for the diagnosis of severe HFMD.

Conclusions

In summary, the changes in serum proteins are related to the severity of HFMD in Chinese children. This study provides important clues for

Figure 1. Validation of human serum amyloid A (SAA1), c-reactive protein(CRP), fibronectin(Fn), apolipoprotein(a) (Apoa) in serum samples from the Hand-foot-mouth disease (HFMD), severe Hand-foot-mouth disease (sever HFMD) and the health control group(HC) by ELISA assay. Figure 1 showed that the levels of SAA1 and CRP were higher in the severe HFMD group compared to the HFMD group (p<0.05) and the HC group (p<0.05). The levels of Fn and Apo A proteins were lower in the severe HFMD group compared to the HFMD group (p<0.05) and the HC group (p<0.05).

further elucidating the pathogenesis of HFMD and identifying potential biomarkers. However, it is necessary to further explore the interactions between serum proteins in HFMD and its mechanism in disease diagnosis and progression.

Ethics Approval

The study was approved by the Ethics Committee of Chengdu Fifth People's Hospital (No. 2022011), Sichuan, China, and conducted according to the principles in the Declaration of Helsinki.

Informed Consent

Written consent was obtained from all the patients' guardians before any procedure was performed.

Availability of Data and Materials

Data is available upon request from the corresponding author.

Conflict of Interest

The authors have no conflicts of interest to declare.

Funding

None.

Authors' Contributions

Zhou Fangye: Conceived and analyzed data and drafted the manuscript; and Yupeng Luo: designed the experiments; Zhang Guangjie Collected the data and helped in data analysis; Huang Min: collected the data.

References

 Meng T, Wong SM, Chua KB. A novel attenuated enterovirus A71 mutant with VP1-V238A, K244R exhibits reduced efficiency of cell entry/exit and augmented binding affinity to sufated glycans. J Virol 2021; 22: e0105521.

- 2) Takahashi S, Liao Q, Van Boeckel TP, Xing W, Sun J, Hsiao VY, Metcalf CJ, Chang Z, Liu F, Zhang J, Wu JT, Cowling BJ, Leung GM, Farrar JJ, Van Doorn HR, Grenfell BT, Yu H. Hand, foot and mouth disease in China: Modeling epidemic dynamics of enterovirus serotypes and im-plication for vaccination. PloS Med 2016; 13: e1001958.
- 3) Guo J, Cao Z, Liu H, Xu J, Zhao L, Gao L, Zuo Z, Song Y, Han Z, Zhang Y, Wang J. Epidemiol-ogy of hand, foot and mouth disease and the genetic characteristics of coxsackievirus A16 in Tai-yuan, Shanxi, China from 2010 to 2021. Front Cell Infect Microbiol 2022; 12: 1040414.
- 4) Xu C. Spatio-temporal pattern and risk factor analysis of hand, foot and mouth disease associated with under-five morbidity in the Beijing-Tianjin-Hebei region of China. Int J Environ Res Public Health 2017; 14: 416-419.
- Lee JJ, Seah JB, Chow VT, Poh, CL, Tan EL. Comparative proteome analyses of host protein ex-pression in response to enterovirus 71 and coxsackievirus A16 infections. J Proteomics 2011; 74: 2018-2024.
- 6) Wang X, An Z, Huo D, Jia L, Li J, Yang Y, Liang Z, Wang Q, Wang H. Enterovirus a71 vaccine effectiveness in preventing enterovirus a71 infection among medically-attended hand, foot, and mouth disease cases, beijing, china. Hum Vacc Immunother 2019; 15: 1183-1190.
- 7) Zhongping X, Hua L, Ting Y, Zhengling L, Min F, Tianhong X, Runxiang L, Dong S, Guangju J, Lei Y, Rong Y, Fangyu L, Qihan L. Biological characteristics of different epidemic enterovirus 71 strains and their pathogeneses in neonatal mice and rhesus monkeys. Virus Res 2016; 213: 82-89.
- 8) Chen GP, Wu JB, Wang JJ, Pan HF, Zhang J, Shi YL, Cao C, Li FR, Fan YG, Meng FY, Ye DQ. Epidemiological characteristics and influential factors of hand, foot and mouth disease (HFMD) reinfection in children in Anhui province. Epidemiol Infect 2016; 1: 153-160.
- Shi C, Liu J, Shi P, Ji H, Shen Y, Qian YH. Epidemiological characteristics and influential factors of hand, foot, and mouth disease reinfection in Wuxi, China, 2008-2016. BMC Infect Dis 2018; 18: 472.
- 10) Zhu L, Yin H, Qian T, Qi GJ, Ren JS, Wang Y, Qi BX. Distinct expression and clinical value of aquaporin 4 in children with hand, foot and mouth disease caused by enterovirus 71. J Med Virol 2022; 94: 587-593.
- Zhou FY, Chen XQ, Chen GX, Yan J, Xiao Y. Identification of SAA and ACTB as potential bi-omarker of patients with severe HFMD using iTRAQ quantitative proteomics. Clin Biochem 2019; 67: 1-6.
- 12) Karthikaichamy A, Deore P, Rai V, Bulach D, Beardall J, Noronha S, Srivastava S. Time for Mul-tiple Extraction Methods in Proteomics? A Comparison of Three Protein Extraction Methods in the Eustigmatophyte Alga Microchloropsis gaditana CCMP526. OMICS 2017; 11: 678-683.
- Martyniuk CJ, Alvarez S, Denslow ND. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology. Ecotoxicol Environ Saf 2012; 2: 3-10.

- 14) Chaerkady R, Pandey A. Quantitative proteomics for identification of cancer biomarkers. Prote-omics Clin Appl 2007; 9: 1080-1089.
- 15) Sun S, Gao F, Mao Q, Shao J, Jiang L, Liu D, Wang Y, Yao X, Wu X, Sun B, Zhao D, Ma Y, Lu J, Kong W, Jiang C, Liang Z. Immunogenicity and protective efficacy of an EV71 virus-like parti-cle vaccine against lethal challenege in newborn mice. Hum Vacc Immunother 2015; 11: 2406-2413.
- Liu H, Luo H. Development of Group B coxsackievirus as an oncolytic virus: opportunities and challenges. Viruses 2021; 13: 1082.
- 17) Zhang SB, Liao H, Huang CH, Tan QY, Zhang WL, Huang Y, Chen K, Qiu SQ, Xing SZ, Liao YH. Serum types of enterovirus and clinical characteristics of 237 children with hand, foot and mouth disease in Shenzhen. Zhongguo Dang Dai Er Ke Za Zhi 2008; 1: 38-41.
- 18) Wu Q, Fu XQ, Jiang LL, Yang R, Cun J, Zhou X, Zhou Y, Xiang Y, Gu W, Fan J, Li H, Xu W. Prevalence of enteroviruses in healthy populations and excretion of pathogens in patients with hand, foot, and mouth disease in a highly endemic area of southwest China. PLoS One 2017; 7: e0181234.
- 19) Yue YY, Li P, Song NN, Li B, Li Z, Guo Y, Zhang W, Wei MQ, Gai Z, Meng H, Wang J Qin L. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model. Mol Med Rep 2016; 5: 4183-4190.
- 20) He SZ, Chen MY, Xu XR, Yan Q, Niu JJ, Wu WH, Su XS, Ge SX, Zhang SY, Xia NS. Epidem-ics and aetiology of hand, foot and mouth disease in Xiamen, China, from 2008 to 2015. Epi-demiol Infect 2016; 9: 1865-1874.
- 21) Li J, Pan H, Wang X, Zhu Q, Ge Y, Cai J, Li Y, Xia A, Hu J, Zeng M. Epidemiology surveillance of hand, foot and mouth disease in Shanghai in 2014-2016, prior to the introduction of the entero-virus 71 vaccine. Emerging Microbes Infect 2018; 7: 37.
- 22) Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, Chang Z, Liu F, Fang VJ, Zheng Y, Cowling BJ, Varma JK, Farrar JJ, Leung GM, Yu H. Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infect Dis 2014; 14: 308-318.
- 23) Liu JJ, Huang PW, Viboud C, Zhang J, Sun J, Wu JT, Chang Z, Liu F, Fang VJ, Zheng Y, Cowl-ing BJ, Varma JK, Farrar JJ, Leung GM, Yu H. Serum amyloid A and clusterin as potential pre-dictive biomarkers for severe hand, foot and mouth disease by 2D-DIGE proteomics analysis. PLoS One 2014; 9: e108816.
- 24) Yuan A, Li J, Liu P, Chen Z, Hou M, Wang J, Han Z. Association of interleukin-6-572C/G gene polymorphism and serum or cerebrospinal fluid interleukin-6 level with enterovirus 71 encephali-tis in Chinese Han patients with hand, foot, and mouth disease. Inflammation 2015; 2: 728-735.
- 25) Matta A, DeSouza LV, Shukla NK, Gupta SD, Ralhan R, Siu KW. Prognostic significance of head-

and-neck cancer biomarkers previously discovered and identified using iTRAQ-labeling and multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2008; 5: 2078-2087.

- 26) Asano T, Nishiuchi T. Quantitative phosphoproteomic analysis using iTRAQ method. Methods Mol Biol 2014; 1171: 251-258.
- 27) Zhou YS, Lamrani M, Chan-Park MB, Leong SS, Chang M, Chen WN. iTRAQ-coupled two-dimensional liquid chromatography/tandem mass spectrometric analysis of protein profile in Escherichia coli incubated with human neutrophil peptide 1--potential in antimicrobial strategy. Rapid Commun Mass SP 2010; 18: 2787-2790.
- 28) Hundt N, Preller M, Swolski O, Ang AM, Mannherz HG, Manstein DJ, Muller M. Molecular mechanisms of disease-related human β-actin mutations p.R183W and p.E364K. FEBS J 2014; 23: 5279-5291.

- 29) Yue Y, Li P, Song N, Li B, Li Z, Guo Y, Zhang W, Wei MQ Gai Z, Meng H Wang J, Qin L. Ge-nomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neo-natal mouse model. Mol Med Rep 2016; 5: 4183-4190.
- 30) Cretu D, Diamandis EP, Chandran V. Delineating the synovial fluid proteome: recent advance-ments and ongoing challenges in biomarker research. Crit Rev Clin Lab Sci 2013; 2: 51-63.
- Marino M, Palmieri G, Peruzzi M, Scuderi F, Bartoccioni E. A Study of Inflammatory/Necrosis Biomarkers in the Fracture of the Femur Treated with Proximal. Mediators Inflamm 2015; 2015: 189864.
- 32) Zhu L, Qian T, Zhang XW, Huang W, Li WH. Using changes in pro-brain natriuretic peptide of plasma amino-terminal and norepinephrine levels as prognostic and diagnostic factors in hand-footand-mouth disease. Eur Rev Med Pharmacol Sci 2018; 13: 4224-4227.

6900