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Abstract. – OBJECTIVE: Human papilloma-
virus (HPV) is associated with cervical cancer. 
For the infection to occur, most HPV types de-
pend on interactions with heparan sulfate proteo-
glycans (HSPGs); however, non-HSPGs recep-
tors are also involved. Laminin 332 is a crucial 
component of the epidermis’s base membrane. It 
has shown interactions with HPV that suggest its 
function as a transient viral receptor in the extra-
cellular matrix (ECM). We provide new informa-
tion about Laminin 332 and HPV by identifying 
LAMA3 gene allelic variants from exons 30 and 
31 and their distribution among women with and 
without HPV infection. 

PATIENTS AND METHODS: We included 
192 cervical cancer scrape samples from two 
groups of patients, 96 samples from patients 
with a low-grade squamous intraepithelial lesion 
(LSIL) and 96 samples from HPV-negative sam-
ples without LSIL. Identification of the HPV type 
was performed using an LCD-Array kit. Exons 30 
and 31 of LAMA3 were amplified by PCR and an-
alyzed by Sanger’s sequencing. 

RESULTS: We identified a wide range of HPV 
types. The most frequent low-risk (lrHPV) HPV 
types were 6, 42, 44, and 90. For high-risk (hrH-
PV) HPV were 16, 31, 56, and 66. Only the genetic 
variant rs1131521 was identified in both groups. 
However, no significant association was ob-
served between rs1131521 and the study groups. 

CONCLUSIONS: A single silent polymor-
phism was identified in both groups with similar 
frequency, whereas no mutations related to in-
creased epithelial friability were identified.
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LAMA3 gene, Sequencing.

Introduction

Human Papillomavirus (HPV) are small and 
non-enveloped double-stranded DNA viruses, with 
more than 150 types described1. Some HPV types are 
associated with multiple human cancers, especially 
cervical (CC)2,3. The two main strategies for CC 
prevention are HPV vaccination and cervical cancer 
screening. RT-PCR from homogenized samples is 
the primary method for HPV detection in cervical 
cancer screenings4. However, if the cell morphology 
needs to be preserved, in situ hybridization using 
Loop RNA probes (LRPs) can be used5,6.

Most uterine cervix, anal, and vaginal carcino-
mas are caused by persistent HPV infections2,4. 
HPV infection begins with the viral particle entry 
to the cell through microtraumas on the mucosa 
and skin. The viral particles’ L1 and L2 capsid 
proteins mediate receptor binding and internaliza-
tion into the cell. Once inside, the early proteins 
E5, E6, and E7 promote cell proliferation and im-
mortality to allow the viral DNA to replicate using 
the replication machinery of the host cell7. The 
manipulation of the cell cycle performed by these 
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Sequence analysis of exons 30 and 31 of 
LAMA3 gene variants and its association with 
human papillomavirus infection predisposition: 
no evidence was found
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proteins increases genetic instability and favors the 
malignant transformation of the cell4.

Entry to the cell might be the most crucial step 
in viral infection; it requires complex viral capsid 
interactions with cellular proteins and receptors, es-
pecially heparan sulfate proteoglycans (HSPGs)8-10. 
However, non-HSPG receptors or receptor com-
plexes are also involved11,12. Some extracellular ma-
trix (ECM) proteins have been proposed as viral 
receptors11,13-16. One of these is Laminin 33217.

Laminin 332 (formerly laminin-5 or LN-5) is a cru-
cial component of the base membrane of the epider-
mis. It is composed of the subunits α3, β3, and γ218,19. 
This protein anchors the epidermis to the dermis, and 
its absence is linked to some skin disorders and epider-
mis friability, such as epidermolysis bulbosa20,21. 

The LAMA3 gene, located on 18q11.2, codes 
the α3 subunit of this protein; it is 256,624 bp 
in size and is composed of 78 exons22. The LA-
MA3 gene is expressed in all body tissues, and 
different expression rates have been associated 
with multiple types of cancers22-24, specifically by 
modifying the architectural environment of the 
ECM, favoring the migration, cell adhesion, and 
invasion of tumor cells19. 

Exons 30 and 31 of the LAMA3 gene are of par-
ticular interest because they are part of the LG3 
domain, which is crucial for the correct function of 
Laminin 332. Currently, at exon 30, there are around 
32 single-nucleotide variants (SNVs) described, and 
two of them are labeled as pathogenic in the ClinVar 
database25 (rs1401574168 and another at c.8755A>T). 
While at exon 31, there are around 18 variants de-
scribed, five are considered pathogenic or likely 
pathogenic (rs34754160, rs772038362, rs137852758, 
rs1057517211, and another at c.8911C>T). 

A previous study17 observed that the L1 protein 
of HPV can interact with Laminin 332 and aid 
in the adhesion to the host cell. Based on this, 
some variants may be linked to an increased sus-
ceptibility to HPV infection, either as a possible 
transient receptor17 or by increasing the cervical 
epithelium friability20,21. 

We sequence exons 30 and 31 of the LAMA3 
gene in HPV-positive and HPV-negative patients 
in search of possible genetic variants associated 
with HPV infection. 

Patients and Methods 

Study Design and Subjects
This study was a comparative cross-sectional 

study. We used data from two different and ran-

domized groups in this analysis. The case group 
included 96 HPV-positive samples obtained from 
patients with low-grade squamous intraepitheli-
al lesions (LSIL), and the control group had 96 
HPV-negative samples without LSIL. We paired 
cases and controls by age. Cervical scrape sam-
ples were collected from the sample library of the 
Molecular Microbiology Laboratory, Molecular 
Medicine Division of CIBO-IMSS.

DNA Isolation
The cervical scrapes (squamocolumnar epithe-

lium of the cervix) were collected with a sterile 
isotonic saline pre-wet cytobrush. The samples 
were preserved in a viral transport medium (Di-
gene HC2 DNA Collection Device, QIAGEN 
GmbH, Hilden, Germany) at 4°C until analysis.

DNA isolation was performed with the High 
Pure Viral Nucleic Acid kit (Roche Molecular 
Systems Inc. Pleasanton, CA, USA), under the 
manufacturer’s recommended conditions. The 
quality and quantity of the isolated DNA were 
evaluated in a NanoDrop 2000 instrument (Ther-
mo Fisher Scientific, Wilmington, DE, USA). The 
DNA concentration of each sample was adjusted 
to 100 ng/µL. 

HPV Detection and Typing
Identification of HPV was performed with 

HPV Type 3.5 LCD-Array kit (Chipron Technol-
ogies, Berlin, Germany). This array identifies 32 
clinically relevant alpha-human papillomavirus 
types. Two primer sets for PCR amplification 
were provided in the kit. The first was based on 
the published and commonly used My11/My09 
system (primer mix HPV My11/09). The second 
primer set produces shorter amplicons of 125 bp 
in length (primer mix HPV 125).

The obtained amplicons were hybridized in the 
LCD chips for typing, using the Prime film 3650u 
scanner (Pacific Image Electronic Inc. Torrance, 
CA, USA) and the SlideReader V9 software 
(Chipron Technologies GmbH, Berlin, Germany).

Molecular Analysis
To identify LAMA3 gene variants in exons 

30 and 31, we used the primers described in a 
previous study26. Amplification was performed 
according to the reaction conditions and PCR 
amplification programs standardized in the Mo-
lecular Microbiology Laboratory.

For exon 30, the primers used were 5’ TTA-
ACCAACCCCTCTTCATCC 3’ and 5’ TTC-
CCCAATATCTCCCACAA 3’, whose product 
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is a 354 bp amplicon. PCR conditions were as 
follows: initial denaturing at 94°C for 5 min, 
followed by 45 cycles (94°C for 30 s, 55.7°C for 
30 s, and 72°C for 30 s), and a final extension at 
72°C for 5 min. 

For exon 31, we used the primers 5’ GG-
CCTTCTATTGCCCTACTG 3’ 5’ATGGTGT-
CATGGCAGTCAGA 3’, whose product is a 375 
bp amplicon. PCR conditions were as follows: 
initial denaturing at 94°C for 5 min, followed by 
42 cycles (94°C for 45 s, 55.7°C for 30 s, and 72°C 
for 30 s), and a final extension at 72°C for 5 min. 

PCR products from exons 30 and 31 of LAMA3 
were purified with QIAquick (QIAGEN, Hilden, Ger-
many), and then analyzed with Sanger sequencing us-
ing the BigDye Terminator v3.1 Cycle Sequencing Kit 
(Applied Biosystems, Waltham, MA, USA) following 
the manufacturer’s recommendations.

Statistical Analysis 
Descriptive statistics for clustering data were 

used for reporting the frequency and distribution 
of the HPV types. The qualitative data analysis 
was performed using nonparametric statistical 
tests such as Chi-square (c2) from the obtained 
allelic and genotypic frequencies. IBM SPSS Sta-
tistics Version 24 (IBM Corp., Armonk, NY, USA) 
was used for data analysis. Statistical significance 
is considered when the p-value was <0.05.

Results

HPV Typification
We found a wide range of low-risk (lrHPV) 

and high-risk (hrHPV) HPV types in the 96 
HPV-positive samples (Table I). The most fre-
quent lrHPV were types 6, 41, 44, 90, and 91, 
while the most frequent hrHPV were 16, 31, 66, 
and 56 (Figure 1). 

Of all HPV-positive cases, 64 were co-infec-

tions, where the most frequent HPV types found 
together were 16/6 and 16/61 (5 cases each), fol-
lowed by 16/81, 16/90, and 16/44 (4 cases each). 
The case with the highest number of HPV types 
in a single co-infection contained HPV16, 61, 81, 
83, 84, 91, 45, 68, and 82.

LAMA3 exons 30 and 31 sequencing.
Of the 192 samples, nine samples (5 HPV-pos-

itive and 4 HPV-negative) were excluded from 
the analysis due to insufficient DNA sequencing 
data. Only variant rs1131521, located on exon 30, 
was identified in both study groups. We found 
150 cases with the C/C genotype, 33 with the 
C/T, and none with the T/T genotype. Chi-square 
showed no significant differences in the distribu-
tion of the genotypes and alleles between the two 
groups (p=0.587) (Table II).

Discussion

HPV Typification
Although this is a small sample of the Mexican 

population, our results show a great diversity of 
HPV types that infect the cervical epithelium. 
The most common types are 16, 6/66, 44, 90/31, 
91, 42, and 56. These results are consistent with 
previous studies27-29 on the distribution of HPV 
types in the Mexican population. 

In these studies27-29, HPV16 is one of the most 
frequent hrHPV types. As for lrHPVs, HPV6 is 
frequent in the Mexican population28,30, espe-
cially in men31,32. HPV3130 is also frequent and 
associated with tonsillar and nasopharyngeal car-
cinoma in Mexicans31.

In our study, 66.6% of cases were co-infections, 
mainly lrHPVs with hrHPVs. Compared to other 
studies27-30 with HPV-positive subjects, the co-in-
fection percentage varies between 32% to 80%. 
The combination HPV6/16 was the most common 
in our study, as well as in a previous one32. Types 
16 and 18 were more prevalent in coinfections28,29. 

We find these results relevant because most HPV 
studies are focused on the United States and Eu-
rope33. These populations have the most influence 
on the types considered for the HPV vaccines. As a 
consequence, the HPV vaccine may not be as effi-
cient for people from developing countries such as 
Mexico, South Africa, Brazil, Saudi Arabia, etc.34,35.

LAMA3 Exons 30 and 32 Sequencing 
In this study, we only identified one variant 

on exon 30 (rs1131521) and none on exon 31. It is 
lrHPV: Low-Risk Human Papillomavirus. hrHPV: High-
Risk Human Papillomavirus.

Table I. Types of high and low-risk HPV identified in the 
case samples. 

 HPV presence N (%)

lrHPV simple infection 20 (20.8)
hrHPV simple infection 12 (12.5)
lrHPV coinfection 8 (8.3)
hrHPV coinfection 6 (6.3)
lrHPV and hrHPV 50 (52.1)
Total 96 (100.0)
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Figure 1. Number of cases with (a) low-risk (lrHPV) or (b) high-risk (hrHPV) human papillomavirus in the 96 study 
samples.

Table II. Genotypic and allelic frequencies of variant rs1131521. 

    Genotypic frequencies†                         Allele frequencies‡

 Groups N  C/C C/T T/T C T

HPV (+)  91 76 (0.835) 15 (0.165) - 167 (0.918) 15 (0.082)
HPV (-)  92 74 (0.804) 18 (0.196) - 166 (0.902) 18 (0.098)
Total 183     

HPV (+) Samples infected with HPV; HPV (-) Samples without HPV infection. †No T/T genotypes were found. 
‡Comparison of allelic frequencies between the HPV (+)/HPV (-) groups did not show significant differences (p > 0.05, 
according to χ2).
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essential to mention that rs1131521 is a silent mu-
tation, both the wild CTA codon and the mutant 
TTA codon code for leucine36. No significant dif-
ferences were observed in the distribution of the 
allelic frequencies of variant rs1131521 between 
the study groups, or with a particular HPV type. 

In our study, the observed frequencies were 
C=0.9176 and T=0.0824 for HPV-positive samples; 
C=0.9022 and T=0.0978 for the HPV-negative sam-
ples. These frequencies differ from those reported 
by the 1,000 genome project37 in a population with 
Mexican ancestry (C=0.8828 and T=0.1172). 

Regarding other populations, Americans 
(C=0.8371 and T=0.1628) were the most similar to 
our frequencies, followed by Europeans (C=0.7942 
and T=0.2058), Asians (C=0.7699 and T=0.2301), 
and African population (C=0.9886 and T=0.0113). 

Conclusions

We only identified variant rs1131521 in both 
study groups. This is a silent mutation and thus 
does not contribute to the increased friability of 
the epithelium in the presence of any lrHPV or 
hrHPV. The frequency of rs1131521 polymor-
phism in our study population differed from 
the previously reported in the North American 
population37. No other variants were found in the 
LAMA3 gene. Although this is a discrete sample, 
the distribution of low-risk and high-risk HPVs 
in the Mexican population differs from what is 
reported worldwide. 
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