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Abstract.  – OBJECTIVE: Alterations in brain 
function in patients with schizophrenia (SCZ) 
and other neuropsychiatric disorders are evi-
dent not only during specific cognitive challeng-
es, but also from functional MRI data obtained 
during a resting state. Patients with chronic SCZ 
have shown deficits in default mood network 
(DMN) and gray matter volume in resting-state 
functional magnetic resonance imaging (rs-fM-
RI). However, cortical thickness and surface ar-
ea in first-episode schizophrenic patients have 
rarely been investigated.

PATIENTS AND METHODS: In the present 
study, we applied independent component anal-
ysis (ICA) to a series of rs-fMRIs of 15 SCZ pa-
tients and 15 matched healthy controls. The data 
were analyzed using MELODIC of FMRIB’s Soft-
ware Library (FSL version 5.9; www.fmrib.ox.ac.
uk/fsl) to identify large-scale patterns of tempo-
ral signal-intensity coherence. 

RESULTS: Patients with SCZ showed sig-
nificantly higher functional connectivity in the 
DMN, auditory network, and cerebellum network 
(p=0.049, p=0.05, and p=0.007, respectively) than 
matched healthy controls. The patients also ex-
hibited significantly less cortical thickness, pri-
marily in the bilateral prefrontal and parietal cor-
tex, and higher thickness in the bilateral anterior 
temporal lobes, left medial orbitofrontal cortex, 
and left cuneus than the matched healthy con-
trols.

CONCLUSIONS: These results indicate that 
significantly abnormal DMN connectivity and 

cortical thickness contribute to local functional 
pathology in patients with SCZ. 

Key Words:
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thickness.

Introduction

Shizophrenia (SCZ) is a chronic, complex, 
long-term psychiatric disorder characterized by 
perceptual, behavioral, and cognitive deficits and 
abnormal emotional regulation, accompanied by 
hallucinations, delusions, negative symptoms, and 
disorganized thinking and speech1,2. Evidence is 
accumulating that patients with SCZ present with 
aberrant functioning of the default mode network 
(DMN)3-5. The DMN is one of the most studied 
brain networks and has become a central topic in 
research on SCZ6. It is a widespread interconnect-
ed network that encompasses multiple core hubs 
of brain regions, including the posterior cingulate 
cortex (PCC), the precuneus (PCu), the medial 
prefrontal cortex (mPFC), and the bilateral infe-
rior parietal lobule (IPL). It expands to the pos-
terior temporal regions around the temporopari-
etal junction (TPJ), as well as the hippocampus, 
the parahippocampal, and adjacent regions in the 
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medial temporal lobe (MTL) and lateral temporal 
cortex (LTC), and it extends towards the tempo-
ral pole (TP)7-11. The DMN has repeatedly shown 
to be deactivated during external goal-oriented 
cognitive tasks and highly activated in a resting 
state and intrinsic mental processing7. Moreover, 
this network has been shown to contribute to dif-
ferent aspects of self-referential or self-generated 
thought and reflective activity10,12-14. 

Increasing numbers of brain imaging stud-
ies11,15-17 have investigated the role of DMN dis-
integration in SCZ. Significant disruptions to 
DMN activity have been reported to correlate 
with different symptoms of SCZ, including pos-
itive and negative symptoms18-20. Suppressed 
DMN activity during the performance of a wide 
range of cognitive tasks has also been observed 
in patients with SCZ; this might be inferred to be 
the root of cognitive deficits in such patients21,22. 
Similarly, a recent study23 has reported that dis-
ruptions to the frontoparietal network and the 
DMN were associated with the metacognitive 
deficits that are clinically observed in patients 
with SCZ. Investigations using resting-state 
functional connectivity (rs-FC) magnetic reso-
nance imaging (MRI) have shown altered func-
tional connectivity between the medial prefron-
tal cortex and the bilateral anterior cingulate 
cortex within the DMN. This correlates signifi-
cantly with the poorer sustained attention ob-
served in patients with SCZ compared to healthy 
controls16. Decreased DMN connectivity is asso-
ciated with poorer clinical outcomes in patients 
with SCZ. In addition, reduced functional con-
nectivity within the DMN has been found to cor-
relate with the severity of positive symptoms (in 
contrast to negative symptoms) of SCZ24. These 
findings together suggest the importance of dis-
rupted activity and functional connectivity in 
the DMN as one of the underlying pathological 
mechanisms of SCZ. Therefore, DMN dysfunc-
tion has clinical implications as an indicator of 
an individual’s vulnerability to SCZ15,17,23,25. In 
addition to alterations in DMN functional con-
nectivity, considerable evidence indicates that 
SCZ is characterized by excessive loss of ce-
rebral gray matter volume (GMV) and surface 
area of certain brain regions26-30. Converging 
structural brain imaging studies have revealed 
excessive cortical thinning in widespread areas, 
with marked reductions in the frontal and tempo-
ral lobes and in the parietal and occipital corti-
ces31-34. Excessive widespread cortical thickness 
reductions in the fronto-temporoparietal region, 

insular sulcal flattening, and gyrification reduc-
tion in the frontal cortex have also been detected 
in patients with SCZ34. These results suggest that 
cortical morphology might serve as a marker of 
increased genetic risk for SCZ and could under-
lie the cognitive deficits in patients with SCZ34. 
Combining resting-state functional and structur-
al imaging could enrich our understanding of the 
pathogenesis of SCZ. Therefore, investigating 
cortical thickness and DMN characteristics can 
help elucidate the underlying pathophysiological 
mechanisms and risk indicators of SCZ. The pres-
ent study aimed to compare DMN functional con-
nectivity and cortical thickness in patients with 
SCZ and in matched healthy controls. According-
ly, we applied independent component analysis 
(ICA) to resting-state functional magnetic reso-
nance imaging (rs-fMRI) data and compared the 
DMN connectivity of healthy controls to that of 
patients with SCZ. We also compared the cortical 
thickness and surface area of the two groups.

Patients and Methods

Participants
The study was approved by the Institutional 

Review Board of King Khalid University Hospi-
tal. Participants included two groups: one group 
of healthy controls (n = 15) recruited via the hos-
pital’s volunteer recruitment system and a group 
of patients with SCZ (SCZ; n = 15) recruited 
through local psychiatric clinics and hospitals. 
The average age of participants was 33.14 ± 9.96 
yrs. (Table I). All subjects provided written in-
formed consent to participate before the study be-
gan. Both groups were outpatients and had been 
clinically stable for at least two weeks. Table I 
shows the demographic data of the subjects.

Clinical Assessment
Participants in the SCZ group were diagnosed 

by experienced psychiatrists based on the DSM-
IV criteria35. 

Participants were excluded if they: (a) had ex-
perienced any substance dependence or severe/
moderate substance abuse (according to the DSM-
IV criteria) in the six months prior to the study; 
(b) were clinically unstable or had experienced a 
severe medical disorder unrelated to SCZ in the 
previous six months; or (c) had a history of loss 
of consciousness or head injury with documented 
neurological problems.
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Trained research assistants used the Assess-
ment of Negative Symptoms (SANS; includes 
subscales for flat affect, alogia, anhedonia, and 
amotivation) and the Scale for the Assessment 
of Positive Symptoms (SAPS; includes subscales 
for hallucination and delusion), disorganization 
(including subscales for formal thought disorder, 
bizarre behavior, and attention) to assess psycho-
pathology36.

Image Acquisition 
A Siemens Magnetom Verio 3T MRI clinical 

scanner (Siemens AG, Healthcare Sector, Erlan-
gen, Germany) and a 12-channel phased-array 
head coil were used to acquire the following: 
(1) T1-weighted 3D magnetization-prepared rap-
id gradient-echo imaging (MPRAGE): TR = 
1600 ms, TE = 2.19 ms, inversion time = 900 ms, 
flip angle = 9°, acquisition plane = sagittal, vox-
el size = 1 × 1 × 1 mm3, FOV = 256 mm, acquired 
matrix = 256 × 256, acceleration factor (iPAT) = 2; 
(2) Fluid attenuated inversion recovery (FLAIR): 
TR = 9000 ms, TE = 128 ms, inversion time = 
2500 ms, flip angle = 150°, acquisition plane = 
axial, slice thickness = 5 mm, FOV = 220 mm, 
acquired matrix = 256 × 196, acceleration factor 
(iPAT) = 2; and (3) a rs-fMRI sequence as in the 
following an echo planar imaging (EPI) based se-
quence with the following acquisition parameters: 
64 2-mm thick axial slices with a field of view 
(FOV) of 224 x 224 and a matrix size of 112 x 112. 
The TE and TR were 30 ms and 1400 ms, respec-
tively. The acceleration factor (iPAT) was 4.

Data Analysis
The Computational Anatomy Toolbox (CAT12: 

http://www.neuro.uni-jena.de/cat), an extensive 
toolbox of Statistical Parametric Mapping soft-
ware (SPM12: http://www.fil.ion.ucl.ac.uk/spm) 
running in Matlab R2018b has been used to de-
rive morphometric measures of the whole brain 
calculating the differences in cortical thickness 
between SCZ patients and healthy control groups. 
The pre-processing steps were carried out ac-
cording to the default settings of the fully auto-
mated SBM method that is described in detail in 
the manual of CAT12. In the SBM method, the 
GM-WM boundary for each hemisphere was 
determined, and the cortical thickness and cen-
tral surface were calculated through the projec-
tion-based thickness (PBT) method37. The left and 
right cortical thickness maps were then resampled 
into template space and smoothed with a Gauss-
ian kernel of 15-mm FWHM.

Results

The sociodemographic profiles of the partici-
pants are shown in Table I. 

The SCZ group showed significantly higher 
functional connectivity in the default mood net-
work (DMN), specifically in the right temporal 
pole (p=0.002), than the matched healthy controls. 

In addition, the SCZ patients had lower gray 
matter density than the control subjects in various 
brain regions, including the left supramarginal 
gyrus (p=0.01), the left and right insular cortices 
(p=0.03), the left precentral gyrus (p=0.04), and 
the right cingulate gyrus (p=0.04).

Compared to the controls, the SCZ group ex-
hibited significantly reduced cortical thickness, 
primarily in the right dorsolateral prefrontal cor-
tex (DLPFC), the left precentral gyrus, the left or-
bitofrontal cortex (OFC), the left inferior frontal 
gyrus pars triangularis, and the right precentral 
and postcentral gyri (p=0.05, corrected for multi-
ple comparisons; Figure 1, Table II). In addition, 
significant cortical thickening was observed in 
the bilateral anterior temporal lobes, the left me-
dial orbitofrontal cortex (med-OFC), and the left 
cuneus of the SCZ group compared to the con-
trols (p=0.05, corrected for multiple comparisons; 
Figure 2). There was a significant difference in 
surface area between the two groups.

Discussion

The purpose of this study was to investigate 
functional connectivity within the DMN and to 
measure cortical thickness in patients with SCZ. 
Our findings showed significantly higher func-
tional connectivity within the DMN, particularly 
in the right temporal pole, in patients with SCZ 
than in matched healthy controls. The patients 
with SCZ also presented with higher functional 
connectivity between distinct brain networks, 

Table I. Anthropometric data of SCZ and control group.

 Control  SCZ
Parameters (n=15) (n=15)

Age 28.8±8.9 33.9±9.9
Height 170±7.1 154±45
Weight 74±15 77±29

Vales are presented in Mean ±SD.
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specifically the auditory and cerebellum net-
works. These findings are in line with other recent 
studies indicating altered functional connectivity 
between distinct networks and within networks 
in patients with SCZ; these alterations have been 
observed in the frontoparietal23, subcortical17, and 
cerebellum networks42. One possible explanation 
for the current findings is that increased rest-
ing-state functional activity in the DMN might 
reflect hyperactivity in the brain’s self-referential 
processing43. Higher DMN activity might help 
elucidate common symptoms of SCZ, such as 
rumination and negative symptoms, which have 
been repeatedly associated with high DMN rest-
ing-state connectivity44-47. Another explanation is 
that a failure to inhibit DMN activity might be at-
tributed to the interference of intrinsic mentation 
and awareness processing48,49. It is possible that 
this high functional connectivity within the DMN 
might relate to an increase in internally directed 
thought46,50,51, an explanation that correlates with 
the clinical scores of patients with SCZ reported 
in previous studies18-20,24. 

Diverse evidence52,53 from neurophysiological 
and neuroimaging research has highlighted abnor-
malities in the morphology, physiology, and func-
tion of medial temporal lobe (MLT) structures, 
including the hippocampus, para hippocampus, 
amygdala, and entorhinal and perirhinal cortices 
in psychotic illness. Abnormalities in the medial 
temporal lobe have been identified before the on-
set of overt psychotic symptoms in clinical high-
risk individuals for psychosis illness52,54. It is worth 
mentioning that individuals who experienced one 
or more of the prodromal symptoms, which are 
characterized by attenuated psychotic symptoms, 
including a brief psychotic episode, paranoid ide-
ation, odd beliefs, subthreshold hallucinations and 
delusions, or display a social and communication 
deficits are considered to be at clinical high risk for 
psychosis55,56. In a cross-sectional and longitudinal 
MRI study, high-risk individuals who developed 
psychotic symptoms, compared to those who did 
not, showed gray matter changes in the medial tem-
poral structures, inferior frontal cortex, and cingu-
late cortex during the transition to psychosis57.

Figure 1. Statistical grand average maps of ICA networks of; (a) DMN, (b) auditory and (c) cerebellum networks overlaid on 
24 axial slices of the MNI152_T1_2mm standard image included in FSL. The (red-yellow) color show ICA maps of control 
group and the (blue-lightblue) color show ICA maps of SCZ patients group, SCZ patients showed greater connectivity in all three 
networks (p=0.049, p=0.05 and 0.007 respectively).

Table II. P values and MNI coordinates of cluster peak regions.

Cluster Index PFEW corrected T Z  X (mm) Y (mm) Z (mm) Region Name

1 0.001 6.25 4.91 26 28 37 R Middle Frontal Gyrus
2 0.01 5.73 4.62 -52 5 22 L Precentral Gyrus
3 0.000 5.68 4.59 15 20 57 R Superior Frontal Gyrus
4 0.007 5.43 4.45 23 2 54 R Superior Frontal Gyrus
5 0.023 5.33 4.39 -38 39 30 L Frontal Pole
6 0.041 5.18 4.30 42 34 -14 R Frontal Orbital Cortex
7 0.038 5.07 4.23 -13 28 52 L Superior Frontal Gyrus
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idence of medial temporal lobe abnormalities in-
volvement in chronic SCZ. These findings suggest 
that related-psychotic pattern of abnormalities or 
changes differ according to the type of disorder, 
which might interpret the early symptoms and se-
verity according to the affected brain regions63-65. 

Divers cortical regions, including OFC and fu-
siform gyrus, were found to be significant contrib-
utors to vulnerability to psychosis, particularly in 
light of emotional processing dysfunction65-68. The 
OFC is a crucial node for emotional information 
processing69. The extensive connection between 
the orbitofrontal cortex and other brain regions 
involved in emotion, including the amygdala, sug-
gests significant involvement of the OFC in mul-
tiple cognitive functions, such as emotional deci-
sion-making, impulse control, social behavior and 
mood regulation70-72. The fusiform gyrus is a critical 
region in recognizing and processing faces and is, 
therefore, important in integrating perception and 
emotion73. Reduced volume of the fusiform gyrus 
was extensively observed in psychosis and was sig-
nificantly correlated with negative psychotic symp-
toms such as anhedonia, emotional blunting, apa-
thy, lack of motivation, and social interest67.74. Such 
volumetric reduction in the fusiform gyrus might 
be associated to a failure in facial recognition and 
affective information processing and, therefore, 
might lead to inappropriate social interaction and 
communication seen in patients with psychosis74. 

We also observed significantly lower cortical 
thickness in the patients with SCZ, primarily in 
the right dorsolateral prefrontal cortex (DLPFC), 
the left precentral gyrus, the left orbitofrontal 
cortex (OFC), the left inferior frontal gyrus (pars 
triangularis), and the right precentral and post-
central gyri. Significant cortical thickening was 
detected in the bilateral anterior temporal lobes, 
the left medial orbitofrontal cortex (med-OFC), 
and the left cuneus in the patients with SCZ. Pre-
vious studies28,29,31-34 have demonstrated a similar 
pattern of reduced cortical thickness, which may 
indicate that cortical structural abnormalities 
could indicate a genetic risk of SCZ. 

Evidence from a variety of studies on psychotic 
disorders has shown a pattern of disorder-associ-
ated morphological changes; thereby, the pattern 
of structural changes differs according to the 
type of psychotic illness58-61. Our previous study62 
showed abnormal shape patterns in the right hip-
pocampus, left and right putamen, left caudate, 
right pallidum. In contrast, the volume decrease 
was shown in SCZ patients in the left thalamus62.

Grey matter decreases in multiple cortical re-
gions, including the frontal and temporo-limbic 
regions but not the medial temporal region, were 
more prominent in patients with chronic psychosis 
than in patients with first-episode psychosis60,61. 
This is supported by a previous meta-analysis63 
of longitudinal MRI studies which showed no ev-

Figure 2. T-statistic map of group difference in cortical thickness.



A.A. Jamea, M. Alblowi, J. Alghamdi, F.D. Alosaimi, F. Albadr, T. Abualait, S. Bashir

674

These converging results might suggest that mor-
phological changes in different brain regions can 
predict the pattern of emotional information pro-
cessing in psychotic disorders66,72,75. 

Wannan et al76 have reported that the fron-
tal and temporal cortical regions, which show 
pronounced reductions in cortical thickness in 
patients with SCZ, have stronger interregional 
anatomical connectivity. This suggests that the 
topography of cortical thickness reductions in 
patients with SCZ can be explained by struc-
tural network topology and not by spatial prox-
imity to the pathologically affected regions of 
the brain. These findings might indicate that 
functional connectivity within the resting-state 
DMN18,77,78 and reductions in cortical thick-
ness29,31-34 may serve as indicators of vulnera-
bility to SCZ. 

Conclusions

One major strength of this study is its combi-
nation of resting-state functional and structur-
al imaging to investigate the pathophysiological 
mechanisms and risk indicators underpinning 
SCZ. However, some limitations should be con-
sidered in interpretations of the current results. 
Our sample size is small and has a relatively 
large age range. Moreover, the investigated fac-
tors (resting-state DMN functional connectivity 
and cortical thickness) were not correlated with 
the participants’ clinical profiles. Integrating 
and correlating different types of functional and 
structural imaging measures with clinical scores 
or symptoms in SCZ could provide different find-
ings. Further studies on a larger population size 
would shed more light on the genetic risks and 
predictors of SCZ. In conclusion, resting-state 
functional magnetic resonance imaging of pa-
tients with SCZ showed that these patients present 
with deficits in DMN functional connectivity and 
reduced cortical thickness in several widespread 
regions of the brain.
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