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Abstract. – OBJECTIVE: To illustrate the pro-
tective effect of RBM10 on hepatocellular car-
cinoma (HCC) progression and the molecular 
mechanism. 

PATIENTS AND METHODS: RBM10 levels in 
HCC tissues classified by tumor size and tumor 
node metastasis (TNM) staging were detected 
by quantitative real-time polymerase chain reac-
tion (qRT-PCR) Chi-square test was conducted 
to reveal the relationship between RBM10 level 
and pathological features in HCC patients. The 
prognostic potential of RBM10 in HCC was as-
sessed via the Kaplan-Meier method. Overex-
pression of RBM10 was achieved by transfection 
of LV-RBM10 in HepG2 and HCC-LM3 cells. Cell 
counting kit-8 (CCK-8) assay and flow cytometry 
were carried out to detect viability and apoptosis 
in HCC cells, respectively. In addition, invasive 
ability was assessed by transwell assay. Pro-
tein level of cleaved-caspase-3 was examined 
by Western blot. Regulatory effects of RBM10 on 
protein levels of EGFR, ERK and p-ERK were de-
termined. 

RESULTS: RBM10 was downregulated in HCC 
tissues. Its level was markedly lower in HCC cas-
es with larger tumor size and stage III+IV. Low 
level of RBM10 predicted poor prognosis in 
HCC patients. Overexpression of RBM10 sup-
pressed viability and invasiveness in HCC-LM3 
and HepG2 cells, but enhanced apoptotic rate 
and protein level of cleaved-caspase-3. EGFR 
was upregulated in HCC tissues, which was neg-
atively regulated by RBM10. Overexpression of 
RBM10 downregulated protein levels of EGFR 
and p-ERK in HCC-LM3 and HepG2 cells. 

CONCLUSIONS: RBM10 is downregulated in 
HCC tissues, which is favorable to the prognosis 
in HCC patients. As a tumor suppressor, RBM10 
attenuates proliferative and invasive abilities, 
but drives apoptosis in HCC cells, thus alleviat-
ing the progression of HCC. 
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Introduction 

Hepatocellular carcinoma (HCC) is a prima-
ry malignant tumor in the liver. About 500,000 
people are diagnosed as HCC, comprising 75-
85% liver tumor cases1. Currently, HCC is the 
third lethal cancer in the world, posing a severe 
health burden2. The complicated development of 
HCC involves diverse genes, pathways and steps. 
Although diagnostic and therapeutic strategies 
have been largely improved, the prognosis in 
advanced HCC is very poor3. The invasiveness 
and metastasis of HCC are closely linked to the 
prognosis4. It is of significance to clarify specif-
ically expressed genes associated with HCC, and 
to underly their potential functions in HCC pro-
gression. RNA-binding proteins are vital proteins 
responsible for regulating numbers and functions 
of genetic products5. RBM10 locates on Xp11.23, 
which is well known for its function in mRNA 
splicing6; RBM10 triggers cell apoptosis and in-
hibits proliferation7,8. Recently, RBM10 has been 
discovered as a tumor suppressor in lung cancer, 
osteosarcoma and endometrial cancer9-11. 

EGFR locates on chromosome 7p12, and it is 
a member of the family of ErbB tyrosine kinase 
receptors12. EGFR and other family members are 
vital regulators in tumorigenesis through mediat-
ing cell growth, cell motion and angiogenesis13-15. 
EGFR-mediated proliferation signaling is an in-
dependent factor leading to tumor progression16. 
The relevance of EGFR-related signals has been 
studied in many cancers, such as gliomas and 
breast cancer17,18. This study aims to explore the 
role of RBM10 in regulating HCC progression 
and the potential involvement of the EGFR sig-
naling. Our findings provide a new idea for target-
ed therapy for HCC. 
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Patients and Methods

Specimen Collection 
This investigation was approved by the Eth-

ics Committee of Gongli Hospital, Pudong New 
Area, and all patients signed written informed 
consent. A total of 46 cases of HCC specimens 
with complete pathological data and follow-up 
data were collected. Surgical resected HCC spec-
imens and normal ones were frozen at -80°C for 
use. Inclusion criteria of HCC patients were: (a) 
patients were pathologically diagnosed as HCC; 
(b) HCC patients were treated by primary or cu-
rative hepatectomy; (c) patients did not have pre-
operative chemotherapy or radiotherapy, and they 
had no extrahepatic metastases; (d) no history of 
HCC treatment; (e) clinical and follow-up data 
were complete. 

Cell Culture and Transfection
Human HCC cell lines (SMMC-7721, SK-hep1, 

HCC-LM3 and HepG2) and immortalized normal 
hepatocytes (L-02) were purchased from China 
Center For Type Culture Collection (CCTCC, 
Wuhan, China). Cells were cultured in Roswell 
Park Memorial Institute-1640 (RPMI-1640; Hy-
Clone, South Logan, UT, USA) containing 5% 
fetal bovine serum (FBS; HyClone, South Logan, 
UT, USA) in a humidified incubator with 5% CO2 
at 37°C. Medium was replaced according to the 
statue of cell growth. Until cells were grown to 
80%, they were digested for passage and plating. 
LV-RBM10 and LV-Ctrl were purchased from 
HANBIO (Shanghai, China). They were trans-
fected in cells using Lipofectamine 2000 plus 
5 μg/mL polybrene (Invitrogen, Carlsbad, CA, 
USA). Transfection efficacy was examined at 24 
h by quantitative real-time polymerase chain re-
action (qRT-PCR). 

QRT-PCR
Total RNAs were isolated from tissues or blood 

samples using RNA extraction kit (ABI, Foster 
City, CA, USA). The concentration and purity 
of RNA were determined using an ultraviolet 
spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA). After reverse transcription, 
complementary deoxyribose nucleic acids (cDNs) 
were amplified for qRT-PCR. Relative mRNA 
level was calculated by 2-ΔΔCt. Primer sequenc-
es of RBM10 were: 5’-GGGGTGTCCTCTAA-
CATTGG-3’ (forward) and 5’-ATGGTCTTG-
CCGTCGATAGT-3’ (reverse); GAPDH were: 
5’-CTGGAACGGTGAAGGTGACA-3’ (forward) 

and 5’-AAGGGACTTCCTGTAACAATGCA-3’ 
(reverse). 

Cell Counting Kit-8 (CCK-8)
1.0×104 cells were implanted in each well of a 

6-well plate. At day 0, 1, 2 and 3, 10 μL of CCK-8 
solution was added (TaKaRa, Dalian, China). Af-
ter 1 h culturing in the dark, the optical density at 
450 nm was measured using a microplate reader. 

Western Blot
Cells were lysed in radioimmunoprecipitation 

assay (RIPA) buffer (Beyotime, Shanghai, Chi-
na) on ice for 30 min. Cell lysate was centrifuged 
at 4°C, 1000 rpm for 10 min. Extracted protein 
samples were quantified by bicinchoninic acid 
(BCA) method (Pierce, Rockford, IL, USA). Pro-
tein samples were electrophoresed in 10% sodium 
dodecyl sulphate-polyacrylamide gel electropho-
resis (SDS-PAGE), and loaded on polyvinylidene 
difluoride (PVDF) membranes (Roche, Basel, 
Switzerland). Subsequently, non-specific antigens 
were blocked in 5% skim milk for 2 hours. Mem-
branes were reacted with primary and secondary 
antibodies for indicated time. Band exposure and 
analyses of grey values were finally conducted.

Flow Cytometry
Cells were washed in pre-cold phosphate-buff-

ered saline (PBS) and resuspended in 1 mL of 
binding buffer at the density of 1×105 /mL. After 
dual-staining of Annexin V and Propidium Io-
dide (PI) for 15 min, cell apoptotic rate was deter-
mined using flow cytometry (FACSCalibur; BD 
Biosciences, Detroit, MI, USA). 

Transwell Assay 
200 μL of serum-free suspension and 500 μL 

of complete medium were applied to the top and 
bottom of a transwell chamber, respectively, and 
cultured for 12 h. Cells in the bottom were sub-
jected to methanol fixation for 15 min, and crys-
tal violet staining for 20 min. Invasive cells were 
counted in 5 randomly selected fields per sample.

Statistical Analysis
Data analysis was performed using Statistical 

Product and Service Solutions (SPSS) 22.0 soft-
ware (IBM, Armonk, NY, USA) and GraphPad 
Prism (Version X; La Jolla, CA, USA). Measure-
ment data were expressed as x ± s. Differences 
between groups were compared using the Stu-
dent’s t-test. The relationship between RBM10 
and pathological features in HCC patients was 
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analyzed by χ2-test. Kaplan-Meier method was 
conducted for survival analysis, followed by Log-
rank test for comparing survival differences. 
p<0.05 was considered statistically significant.

Results

Downregulation of RBM10 in 
HCC Specimens 

Relative levels of RBM10 were detected in 46 
pairs of HCC and normal specimens. As qRT-
PCR data revealed, RBM10 was lowly expressed 
in HCC specimens (Figure 1A). In addition, 
RBM10 level was markedly lower in HCC pa-
tients with larger than 5 cm of tumor size than 
those with smaller ones (Figure 1B). Stage III-
IV HCC patients had lower level of RBM10 than 
those stage I-II patients (Figure 1C). We further 
analyzed the relationship between RBM10 lev-
el and pathological features in 46 HCC patients. 
Based on the median level of RBM10, patients 
were assigned into high level group and low-lev-
el group, respectively. Significant differences in 
tumor size and TNM staging were detected be-
tween groups (Table I). Results of univariate and 
multivariate analysis of clinicopathological pa-
rameters related to overall survival in HCC pa-
tients were shown in Table II. It is indicated that 
RBM10 could affect the tumor size and TNM 

staging in HCC. To determine the possible influ-
ence of RBM10 on the survival in HCC patients, 
Kaplan-Meier curves were plotted. It is shown 
that HCC patients with low level of RBM10 had 
poor prognosis (HR = 0.4282, p=0.0141) (Figure 
1D). Collectively, RBM10 may be a tumor sup-
pressor in HCC progression.

Overexpression of RBM10 Suppressed 
HCC Proliferation

We detected RBM10 levels in HCC cell lines 
and normal hepatocytes by qRT-PCR. It is 
shown that RBM10 was markedly downregulat-
ed in HCC cell lines (Figure 2A). HCC-LM3 and 
HepG2 cells expressed the lowest level of RBM10 
compared to other tested HCC cell lines, and they 
were used for generating RBM10 overexpression 
models by transfection of LV-RBM10 (Figure 
2B). CCK-8 assay showed decreased viability 
in HCC-LM3 and HepG2 cells overexpressing 
RBM10, suggesting the inhibited proliferative 
ability (Figure 2C). 

Overexpression of RBM10 Induced 
Apoptosis and Suppressed Invasiveness 
in HCC

Flow cytometry demonstrated that overex-
pression of RBM10 enhanced apoptotic rate in 
HCC-LM3 and HepG2 cells (Figure 3A). Con-
sistently, protein level of cleaved-caspase-3 

Table I. Correlation analysis between RBM10 expression and clinicopathological parameters of HCC patients.

 RBM10 expression

Clinicopathologic features No. of cases Low (n=23) High (n=23)  p-value

Age (years)    0.767
  ≤60 21 11 10 
  >60 25 12 13 
Gender    0.369
  Male 19 8 11 
  Female 27 15 12 
Tumor size    0.036*
  ≤5 cm 19 6 13 
  >5 cm 27 17 10 
TNM stage    0.035*
  I-II 22 7 15 
  III-IV 24 16 8 
Vascular invasion    0.116
  Negative 15 5 10 
  Positive 31 18 13 
Histological classification    
  Low grade 19 10 9 0.765
  Medium and High grade 27 13 14 

HBV: hepatitis B virus.
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Figure 1. Downregulation of RBM10 in HCC specimens. A, RBM10 expressions in HCC specimens (n=46) and normal ones 
(n=46); B, RBM10 expressions in HCC specimens with large tumor size (≤5 cm) or small ones (>5 cm); C, RBM10 expressions 
in stage I~II and stage III~IV HCC cases; D, Overall survival in HCC patients based on RBM10 levels. 

Table II. Univariate and multivariate analysis of clinicopathological parameters related to overall survival in HCC patients..

 Univariate Multivariate

Variables HR (95% CI) p-value HR (95% CI) p-value

Age (≤60/>60) 1.258 0.367 1.112
 (0.678, 2.112)  (0.701, 2.012) 0.342
Gender (Female/Male) 0.769 0.678 0.698
 (0.345, 2.001)  (0.256, 2.342) 0.603
AFP (≤400/>400) 3.889 <0.001 3.234
 (2.497, 6.691)  (1.423, 5.921) <0.001
HBV (Absent/Present) 0.897 0.701 0.821
 (0.445, 1.567)  (0.521, 1.672) 0.687
Tumor Size (>5 cm/≤5 cm) 1.886 0.034* 1.623
 (1.112, 3.321)  (0.891, 2.121) 0.125
Vascular invasion 2.678 <0.001 2.123
(Positive/Negative) (1.345, 3.980)  (0.789, 4.012) 0.231
Tumor differentiation 0.385 0.003* 0.462
(Moderate-Well/Poor) (0.198, 0.702)  (0.232, 0.887) 0.012*
CDCA2 expression 3.342 <0.001 3.541
(High/Low) (1.784,7.892)  (2.034, 8.765) <0.001



RBM10 alleviates HCC proliferation 

6009

was upregulated in HCC cells overexpressing 
RBM10 (Figure 3B). It is indicated that overex-
pressed RBM10 triggered apoptosis in HCC. In 
addition, transwell assay revealed a decline in 
invasive ability after overexpression of RBM10 
in HCC cells (Figure 3C). 

RBM10 Suppressed Proliferative Ability in 
HCC by Activating the EGFR Signaling

To further explore the possible mechanism of 
RBM10 on affecting HCC cell functions, we ex-
amined the in vitro activation of the EGFR signal-
ing. It is detected that EGFR was upregulated in 
HCC tissues than normal ones (Figure 4A). EGFR 
was downregulated in HCC cells overexpressing 
RBM10 (Figure 4B). As Western blot analysis un-
covered, protein levels of EGFR and p-ERK were 
downregulated by overexpression of RBM10, 
while ERK level was not influenced by RBM10 
regulation (Figure 4C). The above data have con-
firmed that RBM10 inactivated the EGFR signal-
ing in HCC cells. 

Discussion

HCC is considered as the most common prima-
ry liver tumor in the world, which is usually dete-
riorated from chronic inflammation and regener-
ative necrosis19. Overactivation of oncogenes and 
mutations/deficiency of tumor suppressors are 
important during the carcinogenesis of HCC20. 
Searching biomarkers for tumor progression is 
conductive to understand the pathogenesis of 
HCC and to develop therapeutic targets. 

RBPs have been proven to be vital during tu-
mor progression21. Yang et al22 discovered that ec-
topically expressed RBM5 contributes to inhib-
iting growth and invasiveness of prostate cancer 
cells LNCap. Wang et al23 pointed out that RBM6 
is a tumor suppressor responsible for alleviating 
malignant growth of laryngeal cancer. RBM10 
is a family member of RBPs, which was initially 
confirmed in 199524. It is mutant in certain types 
of tumors, including pancreatic cancer, breast 
cancer, colorectal carcinoma and melanoma25-28. 

Figure 2. Overexpression of RBM10 suppressed HCC proliferation. A, RBM10 expressions in HCC cell lines; B, Transfection 
efficacy of LV-RBM10 in HCC-LM3 and HepG2 cells; C, Viability in HCC-LM3 and HepG2 cells overexpressing RBM10.



Z. Zhao, J. Li, F. Shen

6010

Figure 3. Overexpression of RBM10 induced apoptosis and suppressed invasiveness in HCC. A, Apoptotic rate in HCC-LM3 
and HepG2 cells overexpressing RBM10; B, Protein level of cleaved-caspase-3 in HCC-LM3 and HepG2 cells overexpressing 
RBM10; C, Invasion in HCC-LM3 and HepG2 cells overexpressing RBM10 (magnification: 40×). 

Our results uncovered that RBM10 was lowly 
expressed in HCC tissues and cell lines. Its level 
was especially lower in HCC cases with a larg-
er tumor size and stage III~IV cases. In addition, 
lowly expressed RBM10 was unfavorable to the 
prognosis in HCC patients. 

The role of RBM10 in blocking cell cycle progres-
sion and inducing apoptosis has been previously re-
ported29-34. Han et al35 indicated that overexpression 
of RBM10 stimulates apoptosis in the osteosarcoma 
cell line U2OS. Decreased proliferative ability and 
increased apoptosis in hypertrophic primary chon-
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drocytes are closely linked to the overexpression of 
RBM1036. Caspase-3 is an executive factor for ini-
tiating apoptosis37. Under the normal circumstance, 
Caspase-3 normally exists in the form of zymogen, 
which is activated to the cleaved-caspase-3 during 
the process of apoptosis38. In this paper, overexpres-
sion of RBM10 enhanced apoptotic rate and upreg-
ulated cleaved-caspase-3 in HCC-LM3 and HepG2 
cells, and inhibited invasiveness. EGFR has tyrosine 
kinase activity and is a transmembrane glycopro-
tein. EGFR and its family members are involved in 
carcinogenesis by driving malignant phenotypes of 
cells39,40. The EGFR signaling is thought to be relat-
ed to tumor formation and development41. In triple 
negative breast cancer, upregulated EGFR triggers 
cancer cell growth via inducing phosphorylation 
of PKM242. Identically, EGFR was upregulated in 
HCC tissues we collected, which was negatively 
regulated by RBM10. Interestingly, overexpression 
of RBM10 remarkably inactivated the EGFR signal-
ing in HCC cells. We suggested that RBM10 served 
as a tumor suppressor in HCC progression through 

regulating the EGFR signaling. This study for the 
first time explored the vital function of RBM10 in 
HCC progression. Serving as a tumor suppressor 
gene, RBM10 is able to alleviate the malignant pro-
gression of HCC, which can be utilized as a novel 
prognostic biomarker and therapeutic target. 

Conclusions

Summarily, RBM10 is downregulated in HCC 
tissues, which is favorable to the prognosis in 
HCC patients. As a tumor suppressor, RBM10 
attenuates proliferative and invasive abilities, but 
drives apoptosis in HCC cells, thus alleviating the 
progression of HCC. It can be utilized as a poten-
tial target for clinical treatment of HCC. 
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Figure 4. RBM10 suppressed proliferative ability in HCC by activating the EGFR signaling. A, EGFR expressions in HCC 
specimens (n=46) and normal ones (n=46); B, EGFR expressions in HCC-LM3 and HepG2 cells overexpressing RBM10; C, 
Protein levels of EGFR, ERK and p-ERK in HCC-LM3 and HepG2 cells overexpressing RBM10.
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