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Abstract. – OBJECTIVE: The aim of this
study was to identify the hub genes and dysreg-
ulated pathways of hepatocellular carcinoma
(HCC) and explore the molecular mechanism of
the biological process associated with HCC.

MATERIALS AND METHODS: Microarray data
were got from NCBI Gene Expression Omnibus
(GEO) database. The most significant top 100 up-
regulated gene signatures and top 100 down-reg-
ulated gene signatures were identified by inte-
grated analysis of the multiple microarray
datasets using a novel model genome-wide rela-
tive significance (GWRS) and genome-wide glob-
al significance (GWGS). Gene Ontology (GO) en-
richment analysis and pathway analysis of those
genes were performed based on Gene Ontology
website and Kyoto Encyclopedia of Genes and
Genomes (KEGG). Protein-protein interaction
(PPI) network was constructed using Cytoscape
2.1. In addition, we analysed the significantly dys-
regulated signaling pathways across the PPI net-
work and KEGG pathway analysis.

RESULTS: We screened 2920 up-regulated
and 2231 down-regulated gene signatures
across multiple studies by GWRS and GWGS.
The top 100 up-regulated and top 100 down-
regulated gene signatures were selected for
further research. GO enrichment analysis
showed that these genes significantly enriched
in terms of mitosis (p = 5.83×10-20), nuclear di-
vision (p = 5.83×10-20) and M phase of mitotic
cell cycle (p = 9.39×10-20). The most significant
terms of KEGG pathway included cell cycle (p =
1.33×10-8), oocyte meiosis (p = 1.41×10-4), drug
metabolism (p = 2.15×10-4) and p53 signaling
pathway (p = 3.57×10-4). PPI network suggested
that BIRC5, CDC20, CCNB1, BUB1B, MAD2L1
and CDK1 were important significant genes
which were considered as hub genes. Across
the PPI and pathway, cell cycle, oocyte meiosis
and p53 signaling pathway were the significant-
ly dysregulated pathways.

CONCLUSIONS: Our study displayed robust
gene signatures in HCC. It showed that the dys-
regulations of cell cycle, oocyte meiosis, p53
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Introduction

Hepatocellular carcinoma (HCC) is a
cancerous growth arising from the liver. It is the
eighth most common malignancy in women and
the fifth most common malignancy in men
worldwide1, and the third most frequent oncolog-
ical cause of cancer death2. The incidence of
HCC in developed countries is increased recently
years3, and becomes a pressing sociomedical
problem. It had a poor prognosis because of the
high intrahepatic recurrence rate4 and the
frequently associated cirrhosis5,6. With the
progress in diagnostic procedures in recent years,
many new approaches, especially molecular and
bioinformatic method, have come to be detected
and considered for the therapy of HCC.

HCC is a highly complex and heterogeneous
tumor with several genomic alterations7 and a
multifaceted molecular pathogenesis8. It is a slow
process during which genomic changes progres-
sively alter the hepatocellular phenotype to pro-
duce cellular intermediates that evolve into
HCC9,10. Research on the regulation of gene ex-
pression would help us understand the pathogen-
esis of HCC. Microarray analysis has become a
widely used tool for the generation of gene ex-
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pression data on a genomic scale, and generated
large amounts of data. Gene Expression Omnibus
(GEO) and Array Express Archive are two public
database of microarray gene expression data,
which are the generic gene expression database
designed to hold data from all microarray plat-
forms11,12. Recently, there were several studies re-
searched on gene expression of HCC by microar-
ray13,14. Also, pathway analysis has become a
powerful tool for gaining insight into the
underlying biology of differentially expressed
genes and proteins. It was reported that the main
pathogenic mechanism of HCC linked with
alterations in several important cellular signaling
pathways8. An integrated systematic assessment
of the pathways in which these genes intercon-
nect may lead to a more precise set of alterations
that may serve as key biomarkers or drug targets
for clinical interrogation15. Protein-protein
interaction (PPI) network has a small number of
highly connected protein nodes which has known
as hub genes (proteins) that play a key role in
maintaining the network structure. Using PPI
network, nine novel hub genes associated with
liver metastasis of gastric cancer were
identified16. The utilization of these
bioinformatics methods provided the secondary
use of existing public microarray data to predict
the molecular pathogenesis and biomarkers for
cancer, including HCC17,18.

Despite the rich transcriptome data, unveiling
disease mechanism has remained a major chal-
lenge. The overlap is very low for the most sig-
nificantly dys-regulated genes across multiple
studies. Inconsistent results have been presented
due to multiple sources of problems, including
small sample size, measurement error, and differ-
ent statistical methods19.

The systems biology approach views the bio-
logical system as a whole in order to study the
effects of disease and global interactions with
the environment, which facilitates understand-
ing of biological processes and disease20. To
better understand the complex pathology associ-
ated with HCC and identify molecular networks
involved in the disease, we took a systems biol-
ogy approach to investigated gene signatures
between patients with hepatic carcinoma and
healthy people, included meta-analysis using a
new model measure the genome-wide relative
significance (GWRS) and genome-wide global
significance (GWGS), Gene Ontology (GO) en-
richment analysis, pathway analysis and hub
genes identified by PPI network. This analysis

revealed the up- and down-regulated gene
signatures, associated bioprocess, signaling
pathway and interaction between genes (pro-
teins), which provided informations for under-
standing the underlying mechanisms of HCC.

Materials and Methods

Data collection
The gene expression datasets of normal people

and HCC patients (GEO access number:
GSE622221, GSE4180414, GSE5140122) were got
from the NCBI GEO database (http://www.ncbi.
nlm.nih.gov/geo/). A total of 117 samples (54
cases and 63 controls) were collected. These data
were collected from one type of platform:
Affymetrix Human Genome U133 Plus 2.0 Ar-
ray. The following information was also extract-
ed from each identified study: GEO accession
number, sample type, number of cases and con-
trols, and gene expression data.

The Integrated Analysis of Gene
Signatures of Multiple Microarray Data

A novel model, which measured the GWRS
and GWGS of gene expression, was used for
identified gene signatures in multiple microarray
data23. The degree of differential expression of
genes in each single microarray database was
measured by GWRS. The GWGS of a gene was
measured based on its corresponding GWRS
across multiple microarray datasets.

The detailed method had been described in
previous study23. The number of datasets was de-
noted by n, the number of unique genes across n
datasets was denoted by m. The GWRS of the i-
th gene in the j-th dataset was measured by:

sij = –2log (rij__
m), where rij, i = 1–m, j = 1–n, was

the rank number of the i-th gene in the j-th study.
The GWGS of the gene was measured by: = sri
= ∑

n

j=1 �jsij, where wj represented the relative
weight of the j-th dataset. When a probe-set was
mapped to multiple genes, allgenes were given
the expression of the probe-set. We used the
maxim-based method to deal with the situations
which multiple probe-sets associated to a gene.
The gene was removed if it was absent for one
dataset. The degree of differential expression of
genes were measured by fold-change. We as-
signed a rank number for each gene according to
their degree of differential expression. The top
100 up-regulated genes and top 100 down-regu-
lated genes were selected for further analysis.
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was calculated, we measured the degree of differ-
ential expression by fold-change based algo-
rithm, which was proved more suitable than other
statistical test such as t-test (p-value) and SAM.
A gene with large fold-changes was ranked high-
ly. The GWGS of a gene was measured by sr. A
gene with a large sr value was considered to be
significant across multiple individual studies. By
using the intersection of the microarray datasets,
a total of 5151 gene signatures were screened in-
cluding 2920 up-regulated and 2231 down-
regulated genes, and the top 100 up-regulated
gene signatures and top 100 down-regulated gene
signatures, listed in Tables I and II respectively,
were selected from the three microarray datasets
for further research.

Functional and Pathway
Enrichment Analysis

By GO analysis, we identified 99 significant
enrichments of these top gene signatures, which
were classified in 3 GO categories, including bio-
logical processes (BP, 64), molecular functions
(MF, 15) and cellular components (CC, 20). In
BP, those genes significantly participated in nu-
clear division (p = 5.83×10-20), mitosis (p =
5.83×10-20) and M phase of mitotic cell cycle (p
= 9.39×10-20). The most significant terms of MF
and CC were carbohydrate binding (p = 4.52×10-

5) and spindle (p = 1.72×10-12) respectively. The
top 10 GO terms of BP, MF and CC based count
were shown in Figure 1.

Pathway analysis based on KEGG database
showed that these genes significantly enriched in
8 terms (Table III). The most significant terms
were cell cycle (p = 1.33×10-8), oocyte meiosis (p
= 1.41×10-4),drug metabolism (p = 2.15×10-4)
and p53 signaling pathway (p = 3.57×10-4).
Among the 8 terms, the cell cycle pathway was
the most significant term, which also enriched
more genes than other terms.

Structure Interaction Network
of the Gene Signatures

Using Cytoscape 2.1, the interaction network
with 130 nodes and 2049 edges was finally iden-
tified (Figure 2). A gene whose degree larger
than the threshold value (degree = 31.56) was
considered as a hub gene. In this work, forty-
three genes in PPI network were selected as the
hub genes (Table IV), which might play impor-
tant roles in the biological processes of HCC.
The gene BIRC5 showed the highest degree
(degree = 128) in the network, followed by

Functional and Pathway Enrichment
Analysis

To investigate the functions of these gene signa-
tures, we performed GO enrichment analysis based
on Gene Ontology database (http://www.
geneontology.org/). To further assess the signaling
pathway of the gene signatures, we performed a
pathway analysis based on Kyoto Encyclopedia of
Genes and Genomes (KEGG) database
(http://www.genome.jp/kegg/). Our top genes were
applied to this database in order to investigate the
biochemistry pathways that might be involved in
the occurrence and development of HCC. The two
analyses were performed used DAVID24

(http://david.abcc.ncifcrf.gov/tools.jsp). The signif-
icant categories were identified by EASE score.
The threshold of EASE score < 0.01 and the mini-
mum number of genes for the corresponding term
> 2 were considered significant for a category.

PPI Network Construction
Proteins seldom accomplish their functions

independently, it is important to know the
interactions of these proteins by researching larger
functional groups of proteins25. The PPI network
provide a valuable framework for better under-
standing of the functional organization of the pro-
teome. A PPI network can be modeled as an undi-
rected graph, where vertices represent proteins and
edges represent interactions between proteins26. In
this network, proteins with very high degree (high-
ly connected) interact with several other proteins,
suggesting a central regulatory role. They are like-
ly to be regulatory “hubs”27. To research the
interaction among those genes and reveal the hub
nodes in the regulation network, we constructed
the PPI network. The PPI data were downloaded
from STRING database. Then the gene signatures
were imported into the interaction network, and
the interactions were screened with both end
nodes having gene signatures. The PPI networks
were constructed by using Cytoscape 2.1 software.
The nodes that degree ≥ 1 were reserved in the
PPI network. Genes with degree > 31.56 were
considered as hub genes (proteins).

Results

The Integrated Analysis of Gene
Signatures in Multiple Studies

The GWRS and GWGS model used in our
study was considered as a new more robust
model for meta-analysis23. First, when GWRS
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NO. Genes NO. Genes NO. Genes NO. Genes

1 SPINK1 26 KIF4A 51 PRR11 76 PSPH
2 TOP2A 27 PBK 52 CCDC34 77 CENPU
3 ASPM 28 GINS1 53 SSX1 78 UBE2C
4 GPC3 29 CENPW 54 RACGAP1 79 ACSL4
5 ANLN 30 CLGN 55 KIF18B 80 RGS5
6 SULT1C2 31 CAP2 56 MMP12 81 CDKN2C
7 CCNB1 32 PRC1 57 ST8SIA6-AS1 82 REG3A
8 PEG10 33 CD109 58 CCNE2 83 MCM2
9 CDKN3 34 NUF2 59 UBE2T 84 RBM24
10 ECT2 35 NQO1 60 KIF20A 85 MDK
11 CENPF 36 KIAA0101 61 CASC5 86 IQGAP3
12 BIRC5 37 TPX2 62 DTL 87 LOC344887
13 HMMR 38 ENAH 63 CCNA2 88 ZWINT
14 RRM2 39 COL15A1 64 XK 89 RAD51AP1
15 AKR1B10 40 NDC80 65 COCH 90 CHML
16 NEK2 41 MELK 66 NCAPG 91 CDCA5
17 CDK1 42 SFN 67 GJC1 92 TTK
18 IGF2BP3 43 CDC20 68 AFP 93 SORT1
19 AURKA 44 BUB1B 69 CEP55 94 BCAT1
20 CRNDE 45 ROBO1 70 TRIM16 95 IGSF3
21 NUSAP1 46 CTHRC1 71 MAGEA3 96 BUB1
22 FLVCR1 47 MAD2L1 72 MKI67 97 PRIM1
23 CCNB2 48 PLCB1 73 SERPINI1 98 RRAGD
24 ZIC2 49 FAM83D 74 CDCA3 99 P4HA2
25 PTTG1 50 DLGAP5 75 MAGEA6 100 MZT1

Table I. The top 100 up-regulated genes identified from the microarray datasets. The number was sorted by the average of rank.

Figure 1. Summary of the top 10 GO terms of biological
processes (A), cellular components (B) and molecular func-
tions (C). The count represents the number of genes that en-
riched in the term.

CDC20 (degree = 123), CCNB1 (degree = 122),
BUB1B (degree = 117), MAD2L1 (degree =
115) and CDK1 (degree = 114). A gene whose
degree larger than the threshold value (degree =
31.56) is considered as a hub gene.

Across Analysis of PPI and Pathway
Analysis

In this study, KEGG pathway analysis had
identified 8 significant terms, including cell cy-
cle, oocyte meiosis, drug metabolism, p53 signal-
ing pathway, linoleic acid metabolism, retinol
metabolism, metabolism of xenobiotics by cy-
tochrome P450 and progesterone-mediated
oocyte maturation. To further discuss whether
genes in corresponding pathway can be mapped
on the hubs PPI network, we analysed the genes
extracted in each pathway respectively. Twelve of
all 14 genes were mapped on the hubs PPI
network in cell cycle pathway, and the ratios
were 9/9, 5/7, 6/6 in oocyte meiosis, p53 signal-
ing pathway and progesterone-mediated oocyte
maturation pathway respectively (Figure 3).
There were no genes mapped on the hubs net-
work in drug metabolism, linoleic acid metabo-
lism, retinol metabolism and metabolism of
xenobiotics by cytochrome P450 pathway
(Figure 4). Thus, across the PPI and pathway
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NO. Genes NO. Genes NO. Genes NO. Genes

1 FCN2 26 ADH4 51 THBS1 76 FOSB
2 FCN3 27 TIMD4 52 IGJ 77 SKAP1
3 CLEC1B 28 IL13RA2 53 CLDN10 78 RELN
4 CRHBP 29 TMEM27 54 GLS2 79 ITGA9
5 MARCO 30 CD5L 55 HHIP 80 CRISPLD2
6 OIT3 31 ESR1 56 ITLN1 81 MS4A6A
7 CLEC4M 32 THRSP 57 MOGAT2 82 C11orf96
8 LINC01093 33 HAO2 58 CFTR 83 BMPER
9 CLEC4G 34 MAN1C1 59 PTPRB 84 TSPAN7
10 C9 35 DNASE1L3 60 ECM1 85 SDPR
11 CXCL14 36 STEAP4 61 NPY1R 86 FOS
12 TACSTD2 37 LINC00844 62 CHST4 87 CYP8B1
13 C7 38 SLC22A1 63 LCAT 88 HBB
14 LIFR 39 SLC25A47 64 TFPI2 89 CNDP1
15 CYP1A2 40 LY6E 65 F9 90 CYP2A6
16 PLAC8 41 AKR1D1 66 CYP3A4 91 SERPINB9
17 CETP 42 GPR182 67 HPD 92 MRO
18 GPM6A 43 VIPR1 68 RSPO3 93 IDO2
19 CYP2E1 44 IL33 69 ADH1B 94 TUBE1
20 LYVE1 45 CD1D 70 RNF125 95 TSPYL5
21 SRPX 46 SPP2 71 CYP2C8 96 ACSM3
22 DCN 47 SOCS2 72 INMT 97 KBTBD11
23 CFP 48 SLC4A4 73 GLYAT 98 NRG1
24 CXCL12 49 HAMP 74 CPEB3 99 EXPH5
25 STAB2 50 FEZ1 75 FAM65C 100 S100A12

Table II. The top 100 down-regulated genes identified from the microarray datasets. The number was sorted by the average of rank.

Term p value Count Genes

Cell cycle 1.33E-08 14 CDK1, TTK, CDC20, PTTG1, SFN, MCM2, CCNB1, CCNE2,
MAD2L1, CCNB2, CDKN2C, BUB1, BUB1B, CCNA2

Oocyte meiosis 1.41E-04 9 CCNE2, CCNB1, CDK1, CCNB2, MAD2L1, BUB1, CDC20,
AURKA, PTTG1

Drug metabolism 2.15E-04 7 CYP3A4, ADH4, CYP2C8, ADH1B, CYP2A6, CYP2E1, CYP1A2
p53 signaling pathway 3.57E-04 7 CCNE2, CCNB1, CDK1, CCNB2, RRM2, SFN, THBS1
Linoleic acid metabolism 5.85E-04 5 CYP3A4, AKR1B10, CYP2C8, CYP2E1, CYP1A2
Retinol metabolism 9.12E-04 6 CYP3A4, ADH4, CYP2C8, ADH1B, CYP2A6, CYP1A2
Metabolism of xenobiotics
by cytochrome P450 0.001476 6 CYP3A4, ADH4, CYP2C8, ADH1B, CYP2E1, CYP1A2

Progesterone-mediated 0.007085 6 CCNB1, CDK1, CCNB2, MAD2L1, BUB1, CCNA2
oocyte maturation

Table III. The pathway analysis based on KEGG showed genes significantly enriched in 8 terms.

work, we presented the gene signatures by a new
model; then, analyzed them by functional enrich-
ment analysis, pathway enrichment analysis and
PPI network. We found several significant
pathways (cell cycle, oocyte meiosis, p53 signal-
ing pathway and progesterone-mediated oocyte
maturation) and 43 hub genes by PPI network
and those pathways and genes may be useful di-
agnostic approaches for HCC. Across the path-
way analysis and PPI network, we found that
these significant dysregulated pathway involved

analysis, the hub genes were remarkable
enriched in pathways such as cell cycle, oocyte
meiosis, p53 signaling pathway and proges-
terone-mediated oocyte maturation pathway.

Discussion

Identifying biomarkers in complex diseases
such as HCC will contribute us to understanding
the pathogenesis and diagnosing disease. In this
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Figure 2. The PPI network of the top 100 up- and down-regulated genes. The node stands for the protein (gene), edge stands
for the interaction of proteins (genes). The network includes 130 nodes and 2049 edges. A gene whose degree larger than the
threshold value (degree = 31.56) is considered as a hub gene. Forty-three nodes with degree greater than the threshold value
are filled with dark blue.

up-regulated gene signatures, except for THBS1
in p53 signaling pathway which was down-regu-
lated in HCC. P53 as the tumor suppressor factor
had been shown to initiate DNA repair, cell-cycle
arrest and, importantly, apoptosis, and to respond
to many types of cancer therapy28-31. The
dysregulation of p53 function occurred frequently

hallmark cancer genes, including CCNE2,
CCNB1, CCNB2 and CDK1 which were identi-
fied in these significant pathways.

The pathways included cell cycle, oocyte meio-
sis, p53 signaling pathway and progesterone-me-
diated oocyte maturation, which can be mapped
on the hubs network, were enriched mainly by
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Genes Degree Genes Degree

BIRC5 128 CENPF 83
CDC20 123 RACGAP1 83
CCNB1 122 DLGAP5 82
BUB1B 117 AURKA 81
MAD2L1 115 ASPM 80
CDK1 114 MKI67 80
CCNB2 111 RAD51AP1 78
CCNA2 111 CEP55 77
PRC1 110 CDKN3 76
BUB1 108 NCAPG 73
NDC80 106 UBE2C 71
TOP2A 106 ECT2 69
KIF20A 97 ZWINT 67
HMMR 96 DTL 66
RRM2 90 CDCA3 66
TPX2 90 TTK 63
KIF4A 90 GINS1 60
MCM2 89 MELK 60
PBK 86 PTTG1 59
NEK2 85 KIF18B 42
NUSAP1 84 CCNE2 41
KIAA0101 83

Table IV. The forty-three hub genes that degree greater than
the threshold value (degree = 31.56) in PPI network.

Figure 3. The sub-network of genes in cell cycle, oocyte meiosis, p53 signaling pathway and progesterone-mediated oocyte
maturation pathway. The dark blue nodes stand for the hub genes.

in human malignancies32. Edamoto et al33

indicated that the p53 signaling pathway was dys-
regulated in one-third of HCC. The roles of these
up-regulated genes such as CCNE2, CCNB1,
CCNB2 and CDK1 are encoding the proteins
related to cell cycle, their over-expression can
lead to uncontrolled cell growth. In general levels,
p53 and these genes associated cell cycle were
negatively correlated34, thus the up-regulation of
these genes made p53, the tumor suppressor gene,
inactivity. THBS1, as an anti-angiogenic and p53-
regulated gene, is known to repress tumor
progression35,36. Miao et al37 showed that THBS1
had an antitumor activity as it can prevent the
implantation of the melanoma cell line in
C57BL/6 mice. Mouillesseaux et al38 reported
that the disruption of ribosomal biogenesis in-
duced a THBS1-mediated anti-angiogenic path-
way. Unsurprisingly, THBS1 was down-regulated
in our work, which was consistent with these
previous study.

The pathways included drug metabolism,
linoleic acid metabolism, retinol metabolism and
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Figure 4. The sub-network of genes in drug metabolism, linoleic acid metabolism, retinol metabolism and metabolism of
xenobiotics by cytochrome P450 pathway. No genes in these pathways mapped on the hubs network.

regulated BIRC5 gene expression in human pan-
creatic cancer cell lines45.

There were other genes with high degree in
PPI network, such as CDC20, CCNB1, BUB1B,
MAD2L1 and CDK1. CDC20 was an essential
regulator of cell division in human, and had been
shown to interact with BUB1B and MAD2L146,47.
BUB1B was a spindle-assembly checkpoint
gene, which was essential in the mitotic check-
point during normal mitosis progression48,49.
CDK1 belonged to CDK family, and it was
thought the only essential cell cycle CDK50.
These might suggested that gene expression was
not regulated independently, but by the complex
interactions of many genes and factors.

Conclusions

In this work, we presented several hub genes
related to HCC. The bioprocess and signaling path-
ways associated with them were presented system-
atically. Many of these genes were few reported

metabolism of xenobiotics by cytochrome P450,
which can’t be mapped on the hubs network, were
enriched mainly by down-regulated gene signa-
tures, except for AKR1B10 in linoleic acid metab-
olism which was up-regulated in HCC. AKR1B10
encodes member B10 of the aldo-keto reductase
family 1. It was reported that the overexpression
of AKR1B10 was highly correlated with non-
small cell lung carcinomas39,40. Schmitz et al41

found that its expression was associated with less
aggressive hepatocellular carcinoma. AKR1B10,
up-regulated in HCC of this study, might play an
role in liver carcinogenesis.

In our study, the gene BIRC5 showed the
highest degree (degree = 128) in the network.
BIRC5 gene was located at chromosome 17q in
the region that was frequently gained in high risk
neuroblastoma42. It belonged to the family of
genes known as inhibitors of apoptosis. It was
found overexpression in neuroblastoma, and head
and neck squamous cell carcinomas42,43. The
mechanisms of up-regulating of BIRC5 in cancer
were poorly understood44. Curcumin could down-



with HCC. Those genes might play important roles
in HCC, and more research should focus on them.
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