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Abstract. – Tumor tissues are constituted by 
a dynamic diversity of malignant and non-ma-
lignant cells, which shape a puzzling biologi-
cal ecosystem affecting cancer biology and re-
sponse to treatments. Over the course of the tu-
moral disease, cancer cells acquire genotypic 
and phenotypic changes, allowing them to im-
prove cellular fitness and overcome environ-
mental and treatment constraints. This progres-
sion is depicted by an evolutionary process in 
which single cells expand as a result of an inter-
action between single-cell changes and the lo-
cal microenvironment. Recent technological de-
velopments have made it possible to depict the 
development of cancer at the single-cell level, 
offering a novel method for understanding the 
biology of this complex disease. Here, we review 
those complex interactions from the perspec-
tive of single cells and introduce the concept of 
omics for single-cell studies. This review em-
phasizes the evolutionary dynamics that control 
cancer progression and the capacity of single 
cells to escape the local environment and colo-
nize distant sites. We are assisting a rapid pro-
gression of studies carried out at the single-cell 
level, and we survey relevant single-cell tech-
nologies looking at multi-omics studies. These 
forefront approaches will address the combined 
contribution of both genetic and non-genetic 
factors to cancer progression and will pave the 
path for precision medicine in cancer.
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Introduction 

Cancer is a major cause of death throughout 
the world, and despite significant investments 
and advancements in research, cancer still exerts 
a massive burden on society with no immediate 
prospects for effective control1,2. Cancer is char-

acterized as a sizable group of illnesses that re-
sult in unchecked cell proliferation and abnormal 
immune system recognition3. Cancer cells can 
flourish at unneeded levels within a tissue, spread 
beyond normal regulatory boundaries and invade 
neighboring tissues, even colonizing distant sites4.

Over the years, a large range of cancer treat-
ments, including surgery, chemotherapy, radiation 
therapy, and the most recent, immunotherapy, have 
been adopted to eradicate cancer cells or inhib-
it their proliferation. Although patients’ survival 
times have been extended following clinical treat-
ments, a large proportion of patients still experi-
ence recurrence and are unable to achieve long-
term survival. We have a large understanding of 
cancer biology, but translating our knowledge into 
clinical practice is still a complex task due to the 
disease’s demanding cellular complexity, dynam-
ics, and evolutionary characteristics. All these 
components could provide both barriers to or op-
portunities for successful treatments5. The daunt-
ing complexity of cancer resides in the breadth 
and scope of its diversity, including genetics, cell 
phenotype, biological aspects, physiological con-
ditions, and response to therapy. For example, an 
important aspect of cancer cells is the complexity 
of their genomes, which is characterized by a mu-
tational burden, chromosome changes, and local 
genome rearrangements6. All the above concepts 
and diverse aspects of cancer cells have a powerful 
resonance in the field of cancer therapeutics, and 
cancer treatments continue to be a major challenge 
for human medicine today. 

A significant factor in the lethality of cancer is 
cancer evolution, a dynamic, complex, and adap-
tive clonal process that promotes cell robustness 
and is supported by genetic diversity and epigen-
etic plasticity7. Under an evolutionary framework, 
cancer cells adapt to their surroundings, suppress 
the host immune system’s ability to recognize and 
attack tumors and deceive molecular and cellular 
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protective mechanisms primed to prevent tumor 
formation8. Cancer progression begins when a 
normal cell transforms and expands into tumoral 
tissue, initiating a process that could potentially 
transform into a malignant state. During this pro-
cess, cancer cells form a tumor microenvironment 
that protects them during tumorigenesis and makes 
it difficult for the host immune system to effec-
tively eliminate harmful cells9. This evolutionary 
process can increase clonal fitness and empower 
cancer cells to grow more aggressively. As cancer 
cells evolve, their immunogenicity can fade and 
be lower than that of pathogenic microorganisms, 
which consequently induces very weak immune 
responses. Today’s scientific research is improving 
our understanding of cancer by examining cancer 
progression at the single-cell level and using evolu-
tionary theory to explain single-cell diversity, drug 
resistance, and cancer causation.

Here we review, under an evolutionary frame-
work, the role of single cells in cancer development 
and their ability to spread through the body. We 
also attempt to succinctly summarise the most re-
cent tools and techniques used to study cancer at 
the single-cell level, which is sure to revolutionize 
cancer medicine, all within a multi-omics context.

Tumor Heterogeneity

Cancers, during the progress of the disease, 
generally become heterogeneous, a condition 
characterized by the existence of many distinct 
cellular populations rather than a homogenous 
cluster of identical cells. The heterogeneity of 
cancer cells within a singular tumor, named intra-
tumor heterogeneity (ITH), encompasses several 
angles that render tumors unique and has signif-
icant clinical consequences as it often provides 
fuel for resistance10.

A single tumor bulk includes a diverse set of 
cells harboring distinct molecular signatures with 
differential levels of sensitivity to treatment11. 
The mechanisms that cause intratumoral hetero-
geneity are only partially understood and under 
constant debate. Arguably, the most widely rec-
ognized mechanism of tumor heterogeneity relies 
on genetics and involves single-cell mutations and 
chromosomal aberrations, which, when limited to 
a subset of cancer cells, establish distinct genetic 
populations or clones. Clones, on the other hand, 
may differ not only in terms of somatic genetic 
makeup but also in cell morphology, gene expres-
sion, and metastatic potential12.

Genomics as a Source 
of Intratumoral Heterogeneity 

In recent years, large-scale genomic stud-
ies13 and advances in next-generation sequencing 
(NGS) have revealed details about tumor hetero-
geneity and the extent of genetic diversity with-
in tumors. More recently, the adoption of long 
reads/third-generation sequencing has allowed 
for unprecedented characterization of structural 
variation as well as direct detection of epigenetic 
markers in native DNA and RNA. These long-
read technologies are rapidly advancing and have 
improved power to resolve complex regions of the 
cancer genomes14-16. Large-scale genomic stud-
ies14,17 that sequenced multiple cancer regions in 
space and time demonstrated the large repertoires 
of genetic alterations that exist in cancers, includ-
ing single nucleotide variants, small insertions 
and deletions (indels), structural variants, and so-
matic copy number alterations. All those genomic 
alterations contribute to intratumor heterogene-
ity and occur in almost all cancer types, albeit at 
varying degrees17.

Genomic instability is the most studied aspect 
of intratumor heterogeneity, although our under-
standing is still far from being sufficiently com-
plete14. Genomic instability increases the proba-
bility and rate of mutations and thus drives the 
generation of multiple tumor subclones. When a 
single cell divides, stochastic somatic mutagene-
sis might happen in the form of nucleotide substi-
tutions and/or small indels, even in the absence of 
internal and external mutagens18. Considering the 
constant turnover and the large size of the tumor 
cell populations, some stochastic mutations will 
inescapably affect genes with cancer relevance. 
The extent to which those stochastic mutations 
account for carcinogenesis still remains a subject 
of debate19,20. Many spontaneous human cancers 
show aneuploidy, a condition linked with chro-
mosomal instability. Aneuploidy commonly rises 
as a consequence of whole genome doubling due 
to mitotic failure leading to tetraploidization21. 
Chromosomal instability involves loss, gains, 
and translocations of large fragments of genomic 
DNA and follows an increased rate of genomic 
mutation errors22. Certain tumors show a high 
mutational burden as a result of exogenous mu-
tagens. An increased mutation rate and specific 
mutational signatures can rise because of expo-
sure to exogenous mutagens such as UV-related 
mutagenesis in skin cancers and tobacco-related 
mutagenesis in oral, lung, and bladder cancers23. 
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Genetically diverse clonal populations can bear 
distinct morphological patterns and distinct re-
sponses to treatment or environmental stimuli24, 
but emerging evidence indicates that genetic alter-
ations alone might be insufficient to fully explain 
the range of phenotypic diversity in solid malig-
nancies. Intratumoral heterogeneity thus seems to 
arise at other levels beyond genetics, such as epi-
genetics, transcriptomics, and proteomics25. 

Multi-Omics Levels as a Source 
of Intratumoral Heterogeneity

Epigenomics
Intratumor heterogeneity can result from 

epigenetic variability, a reversible and heritable 
phenomenon involving changes that affect gene 
expression with no alteration in the underlying 
genetic background. Changes in gene expres-
sion caused by epigenetics allow cells to adapt 
to microenvironmental stimuli (acidity, oxygen, 
nutrient deprivation) and develop resistance 
mechanisms against clinical therapies26. Different 
environmental-sensitive mechanisms are respon-
sible for epigenetic changes, such as DNA meth-
ylation, histone modification, and non-coding 
RNA acting on gene expression3.

Epigenetics have shown to have an impact on 
tumor cell phenotypes27, and alterations of the 
epigenetic system have been recognized as a hall-
mark of cancer28. In chronic lymphocytic leuke-
mia, corrupted coordination of epigenetic modi-
fications fuels cancer evolution and intratumoral 
heterogeneity. By exclusively activating and re-
pressing histone modifications, leukemic cells 
can dysregulate gene expression and transcrip-
tional output, thereby diversifying cell heteroge-
neity29. Various epigenetic studies30-32 on different 
tumors, such as chronic lymphocytic leukaemia30, 
prostate cancer31, and glioma32 demonstrated 
that DNA methylation patterns can complement 
genetic data to infer cancer evolution. A recent 
study33 measured the co-evolution of the genome 
and epigenome in colorectal cancer. The study 
showed the existence of recurrent somatic alter-
ations in regions of chromatin accessibility, in-
cluding regulatory regions of cancer-driver genes 
that usually lack genetic mutations. Evidence of 
positive selection was found in chromatin mod-
ifier genes, and promoters/enhancers with mu-
tations showed altered expression of associated 
genes. The interplay between epigenetic changes 
and the accumulation of somatic genetic alter-

ations can thus also drive tumor evolution. Im-
portant tumor cell phenotypes, such as immune 
surveillance evasion, may thus be influenced by 
epigenetic alterations. 

Epigenetic modifications are exposed to a high 
error rate in replicating DNA and potentially are 
less faithfully propagated through cell division 
than genetic information, suggesting more epi-
genetic variability as tumors evolve30. Epigenetic 
changes in cancer cells are also responsible for 
cellular plasticity, a phenomenon where cell dif-
ferentiation and reprogramming happen without 
alterations of the underlying DNA sequence34. In-
tratumoral epigenetic heterogeneity analysis has 
been mainly studied by profiling the DNA meth-
ylation status, as the employed methodology has 
limited challenges even at the single cell35. 

One key driver in epigenetics is histone mod-
ification, which modulates the structure of the 
chromatin and regulates the accessibility of DNA. 
Single-cell histone modification assays of breast 
cancer cells have recently shown the presence of 
cellular phenotypes with varying histone modi-
fication patterns36. Furthermore, histone acetyla-
tion plays a role in the development of breast can-
cer, and targeting histone enzymes such as histone 
deacetylases could be a novel approach for breast 
cancer therapy37, as well as reducing host inflam-
mation caused by silicone breast implants38. The 
inclusion of other, more challenging methods, 
such as the above histone modifications and open 
chromatin assays, in the present and near future 
can potentially revolutionize our understanding 
of the epigenomic role in tumor heterogeneity.

Transcriptomics
Transcriptomic profiling at the single-cell lev-

el is a very promising approach for studying in-
tratumoral heterogeneity and cancer progression, 
as well as the tumor microenvironment. Changes 
in transcriptional activity and regulation gener-
ally underlie cellular phenotypic diversity, and 
single-cell transcriptomics provides a quantita-
tive measurement of the molecular activity that 
underlies the phenotypic diversity. Furthermore, 
single-cell transcriptomics can characterize the 
various cell types dwelling in the tumoral micro-
environment, such as immune cell subtypes, in a 
high-throughput and mostly unbiased manner39.

Single-cell transcriptomic profiling of ductal 
carcinoma revealed a different gene expression 
driving heterogeneity and the invasive phenotype40. 
Single-cell transcriptomes of acute lymphoblastic 
leukemia across multiple mice models demonstrat-
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ed that leukemic cells have a unique gene expres-
sion profile to respond to different chemotherapies. 
Leukemia expansion can also be spatially confined 
in single anatomical sites of the bone marrow and 
be driven by cells with distinct gene expression41. 
Genomics and transcriptomics analyses of lung 
squamous cell carcinoma with a moderate level of 
intratumor genetic heterogeneity showed that tran-
scriptomic heterogeneity impacts cancer pathways 
and drives phenotypic heterogeneity. Cancer cells 
belonging to the same subclonal cell population dif-
fer in the transcriptomic makeup and proliferative 
potential, contingent on their localization in the tu-
mor margin or resource-limited interior42.

In colorectal cancer, intratumoral heterogene-
ity inferred via gene expression was found to be 
plastic, that is, to adjust in response to environ-
mental changes rather than being heritable. This 
transcriptional plasticity is, therefore, widespread 
within a tumor43.

Proteomics
Proteomic approaches to investigating intra-

tumoral heterogeneity have long lagged behind 
genomics and transcriptomics, mainly owing 
to technical and biological limitations. A single 
gene can produce high amounts of proteins with 
different isoforms and modification states, which 
are challenging to detect at the single-cell level. 
There may also be complex regulation of protein 
expression at both translational and posttransla-
tional levels, which adds to the technical difficul-
ties. These factors make intratumor heterogeneity 
difficult to unravel using proteomics, especially at 
the single-cell level44. The proteome still remains 
a daunting aspect of tumor biology to compre-
hend, and more research will be required to sup-
plement the already extensive studies of tumor 
transcriptomes and genomes. 

Tumor Microenvironment 
as a Source of Heterogeneity

The tumor microenvironment (TME) is a com-
plex and dynamic entity composed of cells (cellu-
lar component), secreted factors, and extracellular 
matrix (both non-cellular components) capable of 
inducing intratumoral heterogeneity and clonal 
progression, increasing multidrug resistance, and 
stimulating metastasis45. The composition of the 
tumor microenvironment is different among vari-
ous tumor types, but hallmark components include 
immune cells, stromal cells, blood vessels, and ex-

tracellular matrix. It is believed that the TME can 
trigger a large variety of pro-tumorigenic signals, 
and consequently, it is an active promoter of can-
cer progression46. Cancer cells are able to adapt to 
their surrounding microenvironment and to shape 
it through the secretion of oncogenic signals and 
modification of local environmental conditions47. 
As a result, the phenotypic characteristics of can-
cer cells and the heterogeneity of the tumor micro-
environment vary greatly depending on the tumor 
context. For example, in pancreatic cancer, a high 
collagen content of the extracellular matrix is as-
sociated with a poor prognosis and chemoresis-
tance48, whereas in breast cancer, tumor-associated 
macrophages and neutrophils living in the TME 
drive tumor cell plasticity through the secretion of 
specific cytokines49. 

The presence of tumor-infiltrating lympho-
cytes is considered a prognostic marker for lung 
cancer50. The tumor microenvironment can pro-
mote the formation of tumor niches, anatomically 
distinct regions within the tumor microenviron-
ment, that are able to drive cancer progression, 
metastasis, and drug resistance51,52.

TME can also have negative tumorigenesis 
effects, such as cancer growth inhibition, which 
can be induced by cancer-associated fibroblasts 
with tumor-suppressor activity. Cancer-associ-
ated fibroblasts, on the other hand, can also pro-
mote cancer angiogenesis, metastasis, and drug 
resistance, emphasizing the dual roles of TME in 
tumorigenesis being beneficial or harmful53. The 
tumor microenvironment represents an emerging 
target for clinical treatments. 

Phenotypic Plasticity as a Source 
of Heterogeneity

Phenotypic plasticity is the ability of cancer 
cells to undergo dynamic, nongenetic cell state 
changes that amplify cancer heterogeneity and 
can promote metastasis and therapeutic evasion. 
In contrast to the heterogeneity caused by genetic 
changes usually considered permanent, phenotyp-
ic plasticity is dynamic, reversible, and receptive 
to regulation54,55. In this context, distinct cancer 
cell phenotypes can be found as a consequence of 
dynamic and reversible epigenetic and transcrip-
tional mechanisms56. Phenotypic plasticity is now 
recognized as a hallmark of cancer28. 

Epigenetic alterations are usually considered 
drivers of phenotypic plasticity and cell state dy-
namics57. Epigenetic changes can simultaneously 
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affect many loci, leading to rapid shifts in regula-
tory programs and cell states. Acquired epigenetic 
alterations and cell states tend to be heritable and 
can persist for several generations before sponta-
neously reverting or changing in response to lo-
cal signals. Different microenvironmental aspects 
such as hypoxia, tissue constraints, and chronic 
inflammation can both directly and indirectly af-
fect cancer cell epigenetics and, thus, phenotypic 
plasticity58. According to mathematical models, 
reversible epigenetic mutations and fluctuations 
in gene expression patterns can confer transient 
drug resistance due to cell phenotypic switching 
between a drug-sensitive and drug-resistant state59. 
Intratumor epigenetic and transcriptomic hetero-
geneity, at least partly, can contribute to cancer cell 
phenotypes, dormancy, and metastasis60.

Although non-genetic determinants are pri-
marily responsible for phenotypic plasticity, 
genetic changes can also dynamically modu-
late cellular properties and result in phenotypic 
plasticity. In some cases, reversal genetic muta-
tions can compensate for oncogenic genetic al-
terations, such as those reversion mutations in 
BRCA genes which are able to generate a cellu-
lar phenotype resistant to poly ADP ribose poly-
merase (PARP) inhibitors and chemotherapy61. 
In other cases, genetic alterations may impact the 
cellular phenotype via a dose-dependent mech-
anism. Extrachromosomal DNA amplification 
is an important driver of alterations in cancer. 
Unequal segregation of extrachromosomal DNA 
from a parental tumor cell to offspring cells 
rapidly increases tumor heterogeneity, granting 
cancer cells an additional layer of response to 
treatment and perhaps providing them with an 
evolutionary advantage62. Cancer cells with a 
higher copy number of oncogenic loci may have 
a proliferative advantage but may be sensitive to 
a targeted clinical treatment. Cells with lower 
copy numbers, on the other hand, may be tran-
siently less sensitive to the same treatment, and 
under favorable conditions, within a few cell di-
visions may still gain a high-copy number state, 
feeding phenotypic plasticity.

Intrapatient and Interpatient 
Heterogeneity

Multiple tumors of the same type found in 
the same patient can have significant differences. 
The heterogeneous status of similarity or differ-
ences between anatomically distinct tumor sites 

is referred to as intrapatient (or intratumor) het-
erogeneity63. This kind of heterogeneity could re-
sult from intratumor heterogeneity, in which sub-
populations of cells proliferate, differentiate, and 
move from one anatomical site to another, even 
at a distance, to form metastatic lesions. Hetero-
geneity between different malignant sites is the 
most common clinical observation in patients 
with advanced metastatic disease. 

Another type of tumor heterogeneity is inter-
patient heterogeneity, which refers to differences 
in the same tumor type in different patients. It 
refers to differences in tumor genotypes and phe-
notypes between individual patients. Interpatient 
heterogeneity is often observed in clinics and is 
largely associated with different somatic muta-
tions acquired in different genes or in different 
domains within the same gene64. As a result, pa-
tients with the same type of cancer may have very 
different clinical outcomes. Investigations on the 
causes of interpatient heterogeneity are still far 
from exhaustive, but this heterogeneity should be 
considered for designing more efficient and safer 
tumor drug therapies65.

Cancer Progression: 
Darwinian Evolution 

The fundamental principle of a Darwinian 
evolutionary system is the phenotypic variation 
of reproductive individuals linked by common 
descent that undergoes natural selection for the 
fittest variants. Under a Darwinian framework, 
individuals with traits best fitting the environ-
ment will favorably survive and produce off-
spring bearing those advantageously inherited 
traits. Over time increasing accumulation of 
traits or, at the genomic level, genetic mutations, 
can lead to the formation of a new species, partic-
ularly in isolated and reproductive populations66. 
Modern cancer biology and genomics have cor-
roborated cancer progression as a complex Dar-
winian, adaptive system, with cancer cells being 
the equivalent of asexually reproducing, unicel-
lular quasi-species. Tumors are frequently iden-
tified as a large population of genetically diverse 
groups of cells (clones or subclones) competing 
with one another for a limited set of nutrients 
and metabolites under the selective pressures of 
endogenous (e.g., microenvironmental pressures 
and tissue barriers) and exogenous (e.g., therapy) 
factors. The outcome of this competition is the 
survival of clones best fitted to flourish under 
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very specific conditions. Because Darwinian se-
lection is highly contingent and blind to the fu-
ture, many dominant clones at one point in time 
may reach evolutionary dead ends and die out, 
while others, often a minority, may be able to 
persist5. 

Over the last two decades, numerous cancer 
genomics studies67,68 based on next-generation 
sequencing have characterized various aspects 
of cancer progression and supported the con-
cept that cancer development is a process that 
adheres to Darwinian evolution. One of the ear-
liest genomics studies68 sequenced bulk tissues 
from primary and metastatic sites to show the 
somatic evolution of a lobular breast tumor. Ac-
cording to the study, the somatic genomic land-
scape of the metastasis at the time of diagnosis 
was significantly more heterogeneous than that 
of the primary tumor, indicating that somatic 
evolution had occurred between the primary and 
metastasis sites. Intratumor heterogeneity across 
different regions of the same tumor was report-
ed as the result of an evolutionary process69 by 
genetically profiling thirty tumor samples from 
four patients with renal cell carcinoma. Further-
more, the same study found evidence of parallel 
evolution for multiple tumor suppressor genes 
(SETD2, PTEN, and KDM5C), implying that 
selective pressures drive the inactivation of the 
same gene multiple times within a single tu-
mor. Bulk tumor profiling of twenty-one breast 
tumors revealed an extensive genetic variation 
within individual breast tumors, demonstrating 
the role of selection in cancer progression70. The 
genomic characterization of multiple metastases 
from prostate tumors in ten patients identified, as 
a common event, metastasis to metastasis seed-
ing consistent with monoclonal and polyclonal 
dispersal71. Within an evolutionary framework, 
phylogenetic methods can be used to reconstruct 
the clonal composition and progression of can-
cer, as well as the time and onset of metastasis. 
A primary and metastatic bulk genome sequenc-
ing of a colorectal cancer patient combined with 
phylogenomic and serial sampling from differ-
ent stages of the disease allowed us to infer the 
timing of tumor evolution from initiation72. 

Although multiple sampling can provide high 
resolution for inferring clonal evolution, only 
single-cell analysis can give a complete picture 
of clonal dynamics and tumor evolution history. 
Darwinian evolution can provide a distinct evolu-
tionary framework for understanding single-cell 
progression in cancer through the application 

of three concepts: genetic variation, inheritance 
at the single-cell level, and selection. Early evi-
dence of Darwinian evolution at single cell level 
was presented by Nick Navin and colleagues for 
a breast cancer patient73 and by the Mel Greaves 
group for hematological malignancy, therefore 
providing detailed subclonal genetic architectures 
and phylogenies74,75. 

Targeted single-cell DNA sequencing of acute 
myeloid leukemia (AML) samples uncovered 
complex clonal evolution within AML that bulk 
sequencing did not reveal76. Single-cell DNA 
sequencing from non-small-cell lung cancer pa-
tients depicted the clonal evolution and adaptation 
of cancer cells during targeted therapy. Distinct 
driver alterations conferring drug treatment resis-
tance coexist within individual cancer cells77.

Single-cell transcriptomics, due to its high 
resolution, allows for the confident detection 
of genes expressed at the single-cell level. Sin-
gle-cell RNA sequencing has recently emerged 
as a valuable tool for studying tumor evolution-
ary dynamics78. Single-cell transcriptomics was 
used to depict stromal evolution in animal models 
affected by pancreatic ductal adenocarcinoma. 
During cancer evolution, a population of carci-
noma-associated fibroblasts, a TGF-β driven cell 
lineage, was found to be prevalent in the tumor 
microenvironment. These fibroblasts can express 
LRRC15 (leucine-rich repeat containing 15) 
proteins, which are absent in normal tissue but 
abundant in cancerous tissues where they sur-
round cancer cells. The presence of these carcino-
ma-associated fibroblasts is associated with poor 
outcomes in immunotherapy trial79. A combined 
transcriptomics and whole genome single-cell se-
quencing strategy was used to dissect the clonal 
evolution of hepatocellular carcinoma and inves-
tigate the relationship between genetic and phe-
notypic heterogeneity. Key genetic events were 
observed to occur early in cancer evolution when 
primary sites and metastases shared a common 
origin but then evolved independently. Genetic 
diversity was found to be related to single-cell 
transcriptomic phenotype80. Another study81 of 
hepatocellular carcinoma that combined sin-
gle-cell DNA and RNA sequencing found an ac-
cumulation of copy number mutations consistent 
with a two-phase evolution pattern. A first phase 
of non-Darwinian punctuated evolution was fol-
lowed by a second phase of gradual Darwinian 
evolution in which single cells continuously ac-
cumulated genetic aberrations and adapted to the 
selection pressure.
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Clonal Evolution in a Darwinian 
Framework: Linear, Branched, 
Convergent, and Parallel Evolution 

Evolutionary clonal lineages and the chronolo-
gy of somatic mutations occurring over time can 
be inferred through a phylogenetic inference82 
for which general modes of tumor evolution have 
been suggested. Despite still being debated, two 
main evolutionary modes have been proposed 
within a Darwinian framework: linear evolution 
and branching evolution. Other major proposed 
modes, such as neutral evolution and punctuated 
evolution, do not reflect a Darwinian scheme.

The linear evolution mode provides evidence 
for selective sweeps occurring during tumor evo-
lution. The occurrence of new driver mutations 
with a strong selective survival advantage raises 
the fitness of the cells carrying those mutations, 
which outcompete all clones. Cells that do not car-
ry those mutations will succumb to evolutionary 

pressure and die. The resulting phylogenetic tree 
is expected to have a major dominant clone, with 
only rare intermediate clones persisting from the 
previous selective sweeps (Figure 1). Some breast 
cancer cells appear to spread linearly, supporting 
a unidirectional, linear cancer evolution in some 
breast cancer patients83,84.

Branching evolution results from the instabil-
ity of the cancer genome. Clones diverge from a 
common ancestor, evolve in parallel, and separate 
from the previous generation; this process results 
in multiple clonal lineages. Unlike linear evolu-
tion, selective sweeps are uncommon, and multi-
ple clones with the same increased fitness expand 
simultaneously. The resulting phylogenetic tree is 
expected to include intermediate clones as well 
as those clones expanded as a result of positive 
selection acting on subclonal lineages (Figure 1). 
Branching evolution has been reported in many 
human cancers, including, among others, acute 

Figure 1. Modes of cancer evolution. A, The four typical cancer evolutionary processes within a Darwinian (top) and 
non-Darwinian evolutionary framework (bottom). Each evolutionary model is described by Muller plots representing dynam-
ic changes in clonal size over time (left), phylogenetic trees (center), and a schematic representation of generated intratumoral 
heterogeneity (right). Colors indicate different clones and subclones. B, Two different aspects of cancer evolution: parallel and 
convergent evolution, illustrated by Muller plots, phylogenetic trees, and intratumoral heterogeneity. 
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lymphoblastic and myeloid leukaemia85,86, col-
orectal cancer87, melanoma88, brain cancer89,90, 
and also breast cancer70,91,92. 

Regardless of linear or branching architec-
ture, clonal expansion can result in convergent 
or parallel evolution (Figure 1). The independent 
evolution of similar traits in unrelated species or 
clades dwelling in different habitats is referred 
to as convergent evolution. Convergent evolution 
occurs in cancer when different tumor sites in the 
same patient bear a similar mutation pattern, ac-
counting for similar external environments. Con-
vergent evolution also occurs in different affect-
ed patients where cancer clones follow a similar 
eco-evolutionary path and exhibit the same muta-
tional patterns independently. Convergent evolu-
tion was observed in metastatic colorectal cancer 
drug-treated patients, who developed multiple 
convergent somatic mutations regardless of their 
pre-existing mutations. Under convergent evolu-
tion mode, cancer cells can generate drug-resistant 
mechanisms93. Parallel evolution occurs when in-
dependent species or clades acquire similar traits 
while coexisting in the same eco-space. Parallel 
evolution in cancer refers to different clonal pop-
ulations within the same cancer side that evolve or 
retain a specific gene mutation at the same time. 
Cancer cells enduring parallel evolution tend to 
be consistent in their evolutionary direction as 
they might undergo the same or similar external 
pressure. Parallel evolution has been observed in 
many early human cancers, resulting in genetic 
heterogeneity as well as multilineage progression. 
Parallel evolution has been reported, among oth-
ers in myeloma94, lung cancer95, colorectal can-
cer96, and within in vivo models able to resemble 
the genesis of human breast cancer97. Convergent 
and parallel evolution are not mutually exclusive. 
This can be seen in clear-cell renal cell carcinoma, 
where some patients independently had mutations 
converging on the VHL pathway, while others had 
parallel evolution for mutations in the same genes 
or pathways within distinct tumor subclones98. 
Patterns of linear and parallel evolutionary pat-
terns were suggested to coexist in osteosarcoma, 
a common primary bone malignancy, for which 
the lung is the most frequent site of metastasis. 
A significant intertumor heterogeneity between 
tumors and metastatic sites was also suggested, 
with metastatic mutant genes being enriched in 
the MAPK pathway99. MAPK regulates cell fate 
by transducing a myriad of growth-factor signals, 
some of which might be considered potential ther-
apeutic targets in osteosarcoma100. 

Cancer Progression:
non-Darwinian Evolution

The Darwinian model alone seems to be in-
sufficient to fully explain the entire spectrum 
of evolutionary behaviors in cancer. Distinct 
mutation accumulation rates in somatic cells, 
unsustainable genetic loads, and high levels of 
genetic variation challenged Darwinian evolu-
tion101,102. A Darwinian model would typically 
have orders of magnitude less genetic diversity 
than a non-Darwinian model that best fits the 
broad genetic diversity found in some tumors103. 
Furthermore, somatic mutations are common 
in healthy tissues, even in cancer-driver genes, 
suggesting that genetic mechanisms alone may 
not be sufficient to drive malignant transfor-
mation104,105. A growing body of evidence sug-
gests that non-Darwinian mechanisms play an 
important role in tumor evolution. Evolutionary 
processes such as neutral evolution, macroevo-
lutionary changes, and the impact of non-genetic 
determinants are emerging as important drivers 
of cancer progression. 

Neutral Evolution

The neutral model of cancer evolution is based 
on Kimura’s work on population genetics, who 
first supported a neutral process for molecular 
evolution. The neutral model advocates that selec-
tion is weak and most evolutionary changes are 
not caused by natural selection but by stochastic 
genetic drift. Most genetic variants will be neutral, 
with no selection or fitness change, especially at 
small population size. The few and rare variants 
with an impact on fitness will be predominantly 
deleterious and will be eliminated by purifying 
selection. However, neutral evolution does not ex-
clude the possibility of occasional strong positive 
selection, especially after the purifying selection 
has removed harmful mutations106.

Under a neutral model, cancer-driving mu-
tations accumulate in a clonal fashion prior to 
tumor initiation as a consequence of aging and 
carcinogenic action. The genetic heterogeneity 
observed in tumors may often arise as a result 
of the random fixation of neutral alterations 
that play no functional role in promoting tumor 
growth and evolution (Figure 1). The proposed 
Big Bang model of cancer initiation107 is ground-
ed in neutral evolution, in which cancer develops 
as a result of a single expansion of many inter-
mixed clones. The emergence of novel variants 
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is entirely governed by genetic drift, which qui-
etly drives the accumulation of mutations over 
time. Consequently, at the onset of cancer, all the 
mutations responsible for cancer initiation are 
already present, and their presence is sufficient 
for tumor formation and development. Howev-
er, the model does not rule out the possibility of 
selective forces, such as therapeutic pressure, 
acting on previously arisen neutral alterations to 
drive clonal expansion108,109. The Big Bang model 
explains why most mutations in tumors are de-
tected in the early stages of cancer. The power of 
the model is still controversial, being either crit-
icised110 or supported111, and the role of neutral 
evolution in cancer is still hotly debated, despite 
the fact that neutral evolution has been observed 
in various cancers, including colon, stomach, 
and lung cancers109.

Macroevolution: 
Punctuated Evolution

A model of punctuated evolution, also known 
as “discontinuous equilibrium”, has been recent-
ly applied to the field of cancer evolution. The 
punctuated evolution model borrowed from evo-
lutionary biology explains an apparently abrupt 
change in a species’ phenotype. Evolution hap-
pens in short and intense bursts of time inter-
spersed over long periods of time, during which 
apparently no ‘important evolution’ happened. 
This pattern of events is described as punctuated 
equilibrium112. 

Increasing evidence points to the possibility 
that, in some circumstances, cancer progression 
may follow a punctuated evolution (Figure 1). 
Cancer cells may remain stagnant for a long time 
before a large number of genomic aberrations oc-
cur suddenly and in short bursts of time, driving 
cancerogenesis113,114. Those cancer cells could ac-
quire multiple driver alterations at the same time 
and potentially achieve greater fitness than would 
be possible through a gradual accumulation of al-
terations, as in a Darwinian model115. 

Chromosomal instability and significant ge-
nomic rearrangements occur as a result of punc-
tuated evolution. Examples of these catastrophic 
events in cancer genomes include chromoplexy, 
chromothripsis, breakage-fusion-bridge cycles, 
and other similar events. The phenotypic impact 
of the genetic changes achieved through punc-
tuated evolution is frequently deleterious, but in 
rare cases, will result in a significant increase in 

fitness and the generation of highly adapted and 
efficient cancer cells116. Punctuated evolution has 
been described in triple-negative breast cancer, 
where the majority of copy number aberrations 
are acquired at the earliest stages of tumor evolu-
tion117 and prostate cancer genomes114.

Non-Genetic Determinants 
of Cancer Evolution

A growing body of evidence suggests that, 
during cancer evolution, phenotypic changes or 
adaptations to the microenvironment are driven 
not only by genetic alterations but also by non-ge-
netic and often non-heritable determinants such 
as cell plasticity and the status of the tumor mi-
croenvironment24.

Cell Plasticity as Mediator 
of Cancer Evolution

Cell plasticity is a property of both healthy 
and cancer cells that refers to the cell’s ability 
to acquire a new identity or to adopt an alterna-
tive state in response to intrinsic and extrinsic 
signals. In normal physiology, cellular plastici-
ty drives many important biological functions, 
such as cellular differentiation, development, and 
wound healing118. In cancer, cellular plasticity is 
a means by which tumors adapt to their micro-
environments109. This property enables cancer 
cells to quickly react to dynamic changes in the 
tumor microenvironment and to precisely tune 
their response to stressors like inflammation and 
therapy119. Additionally, it has been proposed that 
under a neutral framework, cellular plasticity, 
rather than clonal selection, may be responsible 
for phenotypic changes and adaptation to various 
microenvironments109. In contrast to genetic al-
terations, which have binary and largely irrevers-
ible effects, cell plasticity is reversible because 
it reflects dynamic and reversible epigenetic and 
transcriptional changes56. The epithelial-mesen-
chymal transition (EMT) is the most widely stud-
ied example of phenotypic plasticity, in which 
cells with an epithelial phenotype transform into 
a mesenchymal phenotype while maintaining the 
ability to revert to their epithelial state. EMT typ-
ically occurs during embryogenesis and wound 
healing, when epithelial cells drop their polarity, 
lose cell-cell adhesions, and invade the stroma to 
generate tissue. The EMT mechanism is often hi-
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jacked by carcinoma cells for tumors and meta-
static progression120.

Cellular plasticity has been demonstrated as an 
adaptive mechanism to escape therapeutic pressure. 
For instance, mounting evidence suggests that cell 
plasticity occurs in glioblastoma (GBM), the most 
common malignant brain tumor in adults with high 
levels of therapeutic resistance and a very high rate 
of tumor recurrence. GBM shows limited genetic 
evolution at recurrence, implying that resistance 
mechanisms largely operate at the phenotypic lev-
el, where cancer cells have different gradients of 
transcriptomic states with multiple axes of varia-
tion121. Similarly, in melanoma patient-derived xe-
nografts models, multiple therapeutic-resistant cell 
populations evolve in response to drug treatment 
by diversifying transcriptional states122. Although 
cell plasticity is crucial, malignant melanoma cells 
can still show treatment resistance brought on by 
genetic changes. This shows that different resis-
tance mechanisms are possible in tumor evolution 
and that frequently, one determinant does not pre-
clude the other123. 

Tumor Microenvironment: 
Evolution in Process 

The tumor microenvironment is a complex 
and ever-changing entity that includes immune 
cells, stromal cells, blood vessels, and the extra-
cellular matrix that surrounds and feeds a cancer 
cell. The tumor microenvironment plays a key 
role in the progression of cancer46 and the ther-
apeutic response124. The cancer microenviron-
ment may act as a selective force to tune the evo-
lution of cancer cells into clones able to breach 
lymphatic or vascular channels and spread to re-
gional lymph nodes and distant sites125. Changes 
in the tumor microenvironment were found to 
be associated with progression from pre-inva-
sive to invasive human lung adenocarcinoma126. 
The fact that cancer incidence rapidly increas-
es with age may be linked to the microenviron-
ment. The presence of malignant cells could re-
flect an age-related physiological decline of the 
soma, which, when combined with a weakened 
immune system, may lower the threshold for 
pre-malignant cell clonal expansions127. Inter-
estingly, the mutational burden induced by envi-
ronmental agents varies by tissue type, suggest-
ing tissue-specific differences in toxicokinetic, 
DNA repair activity, and also tumor microenvi-
ronment128.

When Cancer Comes Back:
the Metastatic Recurrence

 
Metastasis is a process arising across multiple 

organs and on different timescales that involves 
the dissemination of cancer cells from a primary 
tumor to a distant organ in the body. Metastases, 
rather than primary tumors, are mainly responsi-
ble for most cancer deaths; in lung cancer, the low 
survival rate reflects the proportion of patients di-
agnosed with metastatic cancer. Despite remark-
able advances in understanding and treating pri-
mary tumors, the five-year survival rate related to 
metastatic cancer remains very poor129.

Because of its continuous and dynamic na-
ture, the metastatic process has been difficult to 
investigate and is still not fully understood. The 
basic form of the metastatic process involves a 
living cancer cell entering, surviving, and ex-
iting the bloodstream and colonizing a remote 
tissue with a potentially hostile microenviron-
ment. Metastasis is a very inefficient process 
because most cancer cells that leave the prima-
ry site either die stranded in capillaries or un-
dergo apoptosis within 24 hours of exiting the 
bloodstream130. Dispersion of cancer cells from 
a primary site can start early during tumor pro-
gression131,132, but only a subset of cancer cells 
develops into metastatic tumors133. 

The metastatic course of cancer cells can 
vary significantly depending on the cancer type. 
In some cancer types, malignant cells primari-
ly spread to a single organ (e.g., prostate cancer 
cells to bone, pancreatic cancer cells to the liver), 
whereas in others, cancer cells can metastasize 
to different organs either sequentially (e.g., col-
orectal cancer cells, often first to the liver, then to 
the lungs and brain) or simultaneously (e.g., lung 
cancer cells, frequently to the liver and brain)134. 
In brain metastases (the majority of which arise 
from lung/breast cancer and malignant melano-
ma), cancer cells must cross the blood-brain barri-
er to initiate metastatic progression. Cancer cells 
can weaken the barrier’s integrity by changing its 
permeability, structural integrity, and active ef-
flux of molecules (this condition is known as the 
blood-tumor barrier)135. Once penetrated, cancer 
cells initiate brain metastasis, which can result in 
significant neurological impairments, intracranial 
hemorrhage, and seizures, all of which have po-
tentially devastating consequences136,137.

The mechanisms underlying metastatic spread 
to multiple organs remain unknown, and their bio-
logical details are still challenging to disentangle. 
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Genetics Determinants of Metastasis

Cancer cells are not under positive selection to 
metastasize, but a set of key adaptations may in-
crease their likelihood of spreading to distant organs. 
In order to earn the ability to become metastatic, a 
cancer cell must acquire potentially metastatic traits 
such as immune evasion, mobility, and the capacity 
to survive and proliferate at distant sites130. When 
traits are acquired, the cell is exposed to particular 
conditions, such as a variety of somatic changes, a 
particular microenvironment, and selection pres-
sure, all of which have an impact on the strength of 
the cell’s fitness63,138. Metastatic cells may also need 
to evade the actions of metastasis suppressor genes, 
a class of genes able to inhibit the metastasis pro-
cess without preventing primary tumor formation, 
such asnm23-H1 in melanoma or KISS1 in breast 
cancer139. Metastatic cells are frequently character-
ized by a high burden of somatic alterations, pri-
marily passengers with only a subset, driver mu-
tations, conferring fitness advantage to metastatic 
clones140-142. Patterns of metastatic dissemination 
have been associated with genomic alterations, and 
genomic instability is strongly correlated with meta-
static burden143. High levels of somatic copy-number 
aberrations are often described in metastatic cancer 
cells144. Somatic mutations found in a metastatic cell 
are not simply a reflection of metastatic mutations 
but also represent an archaeological record of the 
mutational burden. Some somatic alterations are 
likely to have been acquired by ancestral cancer 
cells at the primary site, while others will be gained 
following metastatic dissemination. A large number 
of genes with somatic mutations are known to pro-
mote cancer cell dissemination. These genes pro-
mote cell invasion, circulation, and extravasation, 
as well as cell capacity to induce metastatic nich-
es, co-opt organ-specific stromal components, and 
perform other pro-metastatic functions130,133. When 
disseminated cancer cells adapt to a specific host 
tissue environment, metastatic-promoting genes 
will be preferentially expressed145. Breast cancer 
cells selected for preferential brain metastasis ex-
press higher levels of genes known to facilitate 
blood-brain barrier passage146. Analysis of a large 
number of metastatic breast cancers disclosed 
nine cancer genes (AKT1, ESR1, GATA3, KMT2C, 
NCOR1, NF1, RIC8A, RB1, and TP53) more fre-
quently mutated in a metastatic context and poten-
tially driving metastasis142. In addition, metastasis 
could be triggered by aberrant DNA methylation 
patterns (epigenetic alterations) capable of driving 
colonisation147. 

Phenotypic Plasticity 
as Determinants of Metastasis

The ability of a cancer cell to metastasize is 
caused not only by (epi)genetic and genomic in-
stability but also by phenotypic plasticity or the 
ability of a malignant progenitor cell to under-
go extensive phenotypic variation. Phenotypic 
plasticity critically increases the likelihood of a 
cancer cell metastasizing by allowing the cell to 
adapt to microenvironments, overcome metas-
tasis barriers, and resist therapy148. Cancer cells 
gaining certain plasticity acquire the ability to in-
vade the underlying mesenchyme, to intravasate 
and extravasate blood circulation, and, finally, to 
colonise distant organs130. In colorectal carcinoma 
(CRC) cells are able to acquire phenotypic plas-
ticity through differential gene expression. Un-
der certain environmental conditions, CRC cells 
that express the L1 cell adhesion molecule gene 
(L1CAM) acquire metastasis-initiating capaci-
ty. The L1CAM gene is usually expressed under 
non-cancerous conditions after an epithelium in-
jury in order to be regenerated by intestinal pro-
genitor cells. In a CRC environment, loss of ep-
ithelial integrity promotes L1CAM expression in 
malignant cells, driving cancer cells to a highly 
plastic regenerative phenotype capable of me-
tastasis and skipping anoikis. The expression of 
L1CAM is not necessary for adenoma initiation, 
but it is required for orthotopic carcinoma prop-
agation, liver metastatic colonisation, and che-
moresistance149. Differential gene expression has 
also been observed in prostate cancer. Increased 
expression of brain-derived neurotrophic factor/
tropomyosin receptor kinase B (BDNF/TrkB) has 
been shown to promote prostate cancer progres-
sion by inducing epithelial-mesenchymal transi-
tion and anoikis resistance150-152.

The Metastatic Power 
of the Epithelial-Mesenchymal 

Transition 

The capacity of a malignant cell to undergo an 
epithelial-mesenchymal transition can increase 
the probability of a cell metastasizing. EMT is 
characterized by specific patterns of gene ex-
pression changes, with epithelial cells losing their 
adherent tight junctions and acquiring a mesen-
chymal phenotype, potentially resulting in in-
creased mobility to distant locations153. Cancer 
cells with EMT characteristics can migrate from 
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the primary site, invade, and colonize a distal site, 
and then reverse the process of mesenchymal-ep-
ithelial transition (MET) and initiate metastatic 
growth154,155. In carcinomas, EMT abilities are 
mainly driven by SNAIL, TWIST, and ZEB tran-
scription factors, together with microRNAs that 
balance the regulatory network156. Furthermore, 
TGF-β, in cooperation with other pathways, par-
ticularly the Ras-MAPK signaling pathway, is a 
powerful inducer of EMT by promoting intratu-
moral fibrosis and supporting tumor growth157. 

For over a decade, the role of EMT and its 
reverse process, MET, in promoting metastasis 
has been accepted156, but the concept of a hybrid 
epithelial-mesenchymal phenotype has gained 
increasing importance and challenged the impor-
tance of EMT158,159. Cancer cells during the tran-
sition from epithelial to completely mesenchymal 
states undergo several transition states, interme-
diate epithelial-mesenchymal hybrid states with 
tumor-propagating cell capacity. In contrast to the 
full mesenchymal state, hybrid states do not un-
dergo reverse MET, and other mechanisms other 
than MET may contribute to the metastatic poten-
tial of those hybrid cell populations54. 

Circulating Tumor and Single 
Disseminated Tumor Cells

Cancer cells arising from primary tumors may, 
sooner or later, breach into the vascular system, 
resulting in the intravasation of circulating tumor 
cells (CTCs) capable of traveling to distant sites 
and possibly seeding new metastatic colonies160. 
CTCs can circulate through the vascular system 
as individual cells or multicellular clusters, but 
they usually only last a few seconds or minutes 
before becoming trapped in small-bore microves-
sels in distant tissues. Despite their large volume, 
which makes it difficult to penetrate micro-vessel, 
experimental models revealed that CTC clusters 
have a superior ability to seed metastasis161. CTC 
clusters can line up into a chain of single cells held 
together by adhesive interactions allowing them 
to successfully penetrate 5 μm to 10 μm blood 
vessels162. Notably, CTCs, whether in a cluster or 
single cells, frequently carry combinations of ep-
ithelial and mesenchymal traits, highlighting the 
importance of EMT in cancer dissemination163. 
Detection of CTC in the bloodstream has been 
proposed as a potential biomarker for early cancer 
prognosis. Despite a rich body of literature sup-
porting the biomarker possibility, the sensitivity 

of current CTC detection assays still remains a 
limitation, and concerns have arisen164.

Cancer cells that have left a primary site may 
also go into dormancy, an inactive, lazy state in 
which they persist over time as single dissemi-
nated tumor cells (DTCs) and are capable of re-
activating proliferation after protracted latency 
periods (this phenomenon is known as clinical 
dormancy). For some cancer types, such as breast, 
prostate, and kidney cancers, malignant cells may 
persist dormant for many years, even decades, 
despite successful courses of clinical therapy. 
While establishing a direct link between a new 
metastatic colony and a previously dormant can-
cer cell is difficult, the interaction of DTCs with 
bone marrow may be crucial. DTCs have been 
found in the bone marrow after successful thera-
py in various cancer types (including breast, and 
colon cancers), suggesting both the bone marrow 
as a potential reservoir of DTCs and DTCs as a 
possible source of cancer relapse165. To explain 
recurrence from DTCs, two different models of 
dormancy have been proposed: tumor mass dor-
mancy and cellular dormancy. In the first model, 
the tumor stops growing either at the primary site 
or at metastatic dissemination as a consequence 
of the equilibrium between cancer cell prolifera-
tion and death. This state can be induced by the 
tumor’s angiogenic state (angiogenic dormancy) 
and/or by the surrounding immune system prim-
ing dormant cells to avoid immune surveillance 
(immune-mediated dormancy). In the cellular 
dormancy model, disseminated cancer cells enter 
a quiescent state characterized by minimal prolif-
eration, minimal death, reversibility, and failure 
to form a colony. Different factors can contribute 
to this kind of dormancy, including extracellular 
matrix status, metastatic niche conditions, a hy-
poxic microenvironmental state, and endoplasmic 
reticulum stress166. The microenvironment can 
play a critical role in dormancy through dorman-
cy-inducing signals. In head-and-neck squamous 
carcinoma, a high concentration of TGF-β2 in 
the bone marrow can induce dormancy in DTCs 
via TGF-β-RI and TGF-β-RIII signalling167. Dor-
mancy can also be induced by BMP ligands. In 
prostate carcinoma, bone stromal cells expressing 
BM7 can induce dormancy on prostate cells168, 
whereas BMP4 ligand expression in the lung 
maintains dormancy on disseminated breast can-
cer cells. In contrast, DAND5, a member of the 
DAN family proteins, by inhibiting BMP signal-
ing, induces dormant metastasis initiating cells to 
reactivate in the lung169.
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Establishing a Niche

In ecology, a niche generally refers to all those 
environmental factors and interspecies relationships 
that influence a species’ growth and distribution. 
This concept can be applied to cancer progression 
by referring to the dynamic, anatomical, and envi-
ronmental conditions, as well as cell-to-cell interac-
tions, that drive cancer cell adaptation. Good exam-
ples include the hematopoietic stem cell niche and 
the perivascular niche. Dormant DTCs may dwell 
in specialized niches that support their survival, 
hamper their proliferation, and protect them from 
therapeutic agents170. In order to dwell and survive 
in a specialized niche, cancer cells must be prepared 
to respond to the extracellular matrix and metabolic 
signals, to the stromal architecture, and to cell-to-
cell contacts. All these factors can be collectively 
referred to as metastasis niche171,172. In addition to 
adapting to the microenvironment in which they are 
colonizing, metastatic cancer cells must also com-
pete with normally residing cells for environmental 
resources. Cytokines are increasingly being recog-
nized as critical factors in creating a permissive mi-
croenvironment for metastatic growth by bridging 
communications between cancer and dweller cells. 
Prostate cancer cells metastasizing to the bone will 
most likely target a stem-cell niche and address the 
CXCL12/CXCR4 pathway, which is normally re-
served for hematopoietic stem cell physiologic reg-
ulation173. Overexpression of the cytokine CXCL12 
and its receptor CXCR4 in malignant prostate cells 
strongly promotes proliferation, migration, and in-
vasion174. Primary tumors can also release tumor-de-
rived factors such as chemokines, cytokines, and 
hormones, which prime distant organs to nurture 
the arriving cancer cells, resulting in the formation 
of a pre-metastatic niche175. This supportive meta-
static microenvironment at distant sites is frequently 
characterized by increased vascular permeability, 
reorganization of the extracellular matrix, recruit-
ment of bone marrow-derived cells, angiogenesis, 
and immunosuppression176. Angiogenesis is a hall-
mark of cancer and aids tumor progression in many 
ways4. Cancer therapies targeting the vascular endo-
thelial growth factor (VEGF), a potent angiogenic 
factor, have been suggested177.

Investigate Single Cells 
in the -omics Time 

Two revolutionary methods for sequencing nu-
cleic acids at the single-cell level were introduced 

around a decade ago. The first method allowed for 
the sequencing of single-cell DNA (scDNA-seq) 
and the inference of tumor evolution using indi-
vidual cells73. The second method described the 
whole transcriptome at the scale of single cells 
through single-cell RNA-sequencing (scRNA-
seq)178. Since the introduction of these two sin-
gle-cell sequencing (SCS) methods, the field has 
advanced rapidly, and thousands of cells can now 
be sequenced in parallel, delivering unprecedent-
ed resolution of single-cell phenotypes and re-
markable insights into cancer progression.

Despite significant progress in single cell meth-
ods over the last decade, cancer research continues 
to struggle to fully adopt single cell profiling, and 
traditional approaches of sequencing a mixture of 
cancer cells (termed bulk sequencing) are still wide-
ly used, particularly in genomics studies179. Single 
cell sequencing has some limitations at the moment 
when compared to bulk sequencing methods; SCS 
is time-consuming and requires a rigid experimen-
tal design, which is often impractical because it re-
quires live single cell dissection. SCS, compared to 
traditional bulk sequencing, requires challenging 
experimental procedures, burdensome downstream 
data analysis, and might suffer higher technical vari-
ations. Despite some advantages over SCS, bulk se-
quencing provides an average signal from different 
cell types and only gives rough estimates of cancer 
clones present in a tumor sample. As a consequence, 
bulk methods cannot resolve cell-to-cell variations 
of heterogeneous cell populations and are unable to 
dissect the cellular components of a small number 
of cells180. Single-cell sequencing methods, on the 
other hand, can resolve the confounding effects of 
different cell types in heterogeneous samples that 
cannot be separated using traditional bulk methods. 
Single-cell sequencing has the capability to measure 
the -omics (genomic, epigenomic, and transcrip-
tomic) heterogeneity of a cellular population, and 
the changes happening at these levels. A significant 
shift toward single-cell technologies is expected 
over the next few years, even if it is already occur-
ring (Figure 2).

The recent commercialization of a plethora of 
sequencing methods provides stable platforms for 
single-cell sequencing, and an increasing number 
of single-cell methods have been developed to 
profile a specific omics layer. Although single-cell 
sequencing and omics studies have grown in popu-
larity in cancer research, their use in clinical stud-
ies remains limited. Costs, throughput, the lack of a 
rigorously standardized methodology, and straight-
forward reproducibility remain critical issues.
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Single Cell Transcriptomics

Single-cell RNA sequencing provides a pre-
cise understanding of the transcriptomic status 
of a heterogeneous cell population, which may 
include tumor cells, immune cells, fibroblasts, 
and endothelial cells, among others. It estimates 
the number of transcripts present in a single 
cell. Despite a variety of methodologies exist-
ing for single-cell RNA sequencing, nearly all 
involve poly-A selection and are thus suitable for 
mRNA. This limitation burdens the capability 
to investigate non-polyadenylated transcripts, 
such as small nucleolar RNAs, histone mRNAs, 
pre-mRNAs, and long noncoding RNAs, which 
may have diverse regulatory roles in cancer181. 
For the measurement of transcripts in each cell, 
reverse transcription of very small amounts of 
RNA and complementary DNA (cDNA) ampli-
fication must be performed, followed by the se-
quencing of the amplified molecules. This goal 
can then be met using two distinct procedures: 
full-length transcript sequencing and 3’/5’-tag 
capturing sequencing.

The first method generates full-length cD-
NA-amplified products and achieves full-length 
coverage across transcripts; an example of this 
approach is given by Smart-seq2, a method that 
allows the generation of full-length cDNA librar-
ies from individual cells182. Despite the benefit of 
having complete coverage, full-length transcript 
sequencing requires processing hundreds to thou-
sands of single cells with small amounts of liq-
uid, which is currently difficult to accomplish. 
However, this approach is constantly evolving, 
and third-generation sequencing, such as Pacif-
ic BioSciences (PacBio) technology, now allows 
for the generation of high-confidence full-length 
transcripts as well as the detection of RNA iso-
forms of individual cells183.

Different and widely used technologies use 
3’/5’-tag capturing protocols where sequenc-
ing barcodes are located at the 3’ or 5’ end of 
the RNA. Microdroplet-based systems such as 
Chromium (10× Genomics) employ an oil drop-
let to carry out reverse transcriptase and generate 
cDNA for a single cell. Each oil droplet contains 
a cell/nucleus, reaction liquid, and a barcoded 

Figure 2. Single cells cancer research applications. Schematic of single cell omics fields and relative technologies. Essential 
single-cell sequencing (SCS) applications include investigating tumor initiation, clonal evolution, tumor microenvironment, 
metastatic dissemination, and therapeutic resistance. 
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bead. The resulting cDNA library can then be 
sequenced. Microwell-based systems, such as the 
BD Rhapsody, accommodate only one cell and 
one oligo-barcoded bead in each microwell, which 
captures mRNA molecules after single-cell lysis. 
After that, all of the beads are combined into a 
single tube for reverse transcription and cDNA 
amplification, library construction, and sequenc-
ing. Both microdroplet and microwell protocols 
allow for the easy handling of thousands of single 
cells and typically result in high cell throughput.

For even higher throughput and lower costs, a 
novel method known as single-cell combinatorial 
indexing (sciRNA-seq) has been proposed. This 
is a combinatorial indexing method with a com-
plex procedure that uniquely barcodes the RNA 
contents of each cell184. Although sci-RNA has a 
high single-cell throughput, it generates sparse 
coverage resulting in a lower efficiency of the 
generated sequences185.

Full-length transcript approaches typically 
have high sensitivity of gene detection but low 
cell throughput (e.g., 100-300 cells for Smart-
seq2). Methods based on 3’/5’ -end transcripts 
usually have high cell throughput (e.g., 1,000-
10,000 cells for microdroplet/microwell-based 
systems, ≥ 50,000 cells for sciRNA-seq) but low 
detection accuracy186. 

As single-cell sequencing generates sparse, 
multidimensional data, suitable bioinformatics 
tools should be selected according to the research 
purposes and the data set. For example, Seurat187 is 
an R package for scRNA-seq analysis that includes 
data filtering, normalization, scaling, dimensional-
ity reduction, clustering, and visualization.

Single Cell Genomics

Single-cell genome sequencing allows for the 
profiling of genetic heterogeneity in single-cell 
populations and is widely used to study the somat-
ic mutational landscape of cancer cells. Individual 
cells’ genomes can be sequenced using either the 
low cell-throughput (10-100) method of single-nu-
cleus sequencing73 or the high cell throughput 
(10,000-20,000) approach based on combinatori-
al indexing and termed SCI-seq188. Both methods 
have sparse coverage and are primarily useful for 
identifying copy number variations.

The main limitation of single-cell DNA se-
quencing is the amount of DNA that can be ex-
tracted from a single cell, which is usually very 
small and requires an amplification step prior to 

sequencing. Various whole-genome amplification 
(WGA) methods, such as multiple displacement 
amplification189, multiple annealing, and loop-
ing-based amplification cycles190, have been devel-
oped to amplify the genomic DNA of individual 
cells. Because a human single cell contains only 
two copies of genomic DNA, WGA is extremely 
challenging and frequently results in nonuniform 
genome coverage, allelic dropout, and amplifi-
cation artifacts after the sequencing step. All of 
these factors are currently the main limitations of 
scDNA-seq, and we have yet to see a significant 
technological advancement capable of overcom-
ing those limitations. However, various bioin-
formatics tools such as SCcaller191, LiRA192, and 
Conbase193 have been developed to address these 
limitations and are capable of detecting somatic 
variants despite the aforementioned constraints.

Single Cell Epigenomics

Individual cells’ epigenetic status can be as-
sessed using three main strategies: 1) profiling 
the whole-genome DNA methylation status; 2) 
determining the genome-wide binding sites of 
DNA-associated proteins; 3) estimating the chro-
matin accessibility level.

Single-cell DNA methylation profiling can be 
estimated through single-cell bisulfite sequencing 
(scBS-seq)194, which converts unmethylated cyto-
sines (C) to uracils (U) by bisulfite treatment and 
estimates the CpG methylation status across the 
entire genome. Two recent scBS-seq approaches, 
snmC-seq2195 and sci-MET196, can profile the sin-
gle-cell DNA methylome at high cell throughput 
(1,000-5,000). However, estimating methylation 
levels in single cells remains difficult and can re-
sult in high levels of artefactual sequences such 
as adapter dimers, a low mapping rate, or a small 
insert size.

The following methods can be used to investi-
gate the genome-wide binding sites of DNA-associ-
ated proteins: single-cell ChIP-seq (scChIP-seq)197 
(cell throughput: 1,000-10,000) and single-cell 
Hi-C (scHi-C-seq) (cell throughput: 1-10)198. Sc-
ChIP-seq can be performed in a highly parallel 
manner using a droplet microfluidics-based pro-
cedure called Drop-ChIP, unique molecular bar-
codes, and next-generation sequencing197. Chroma-
tin immunoprecipitation of a single cell followed 
by scChIP-seq is usually used for mapping histone 
modifications, transcription factors, and other 
protein-DNA interactions genome-wide. ScHi-C-
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seq is a chromosome conformation capture assay 
that quantifies interactions between closely spaced 
genomic loci in 3D space to examine the spatial, 
three-dimensional genome organization of a single 
cell. Despite the technology’s promise for genome 
3D mapping, it suffers from extreme data sparsity, 
making analysis difficult199.

The sci-ATAC-seq (single-cell assay for trans-
posase accessible chromatin sequencing; cell 
throughput: 10,000-20,000)200 can be used to in-
vestigate chromatin accessibility across the entire 
genome at the single-cell level. Sci-ATAC-seq 
identifies open chromatin patterns and assess-
es how chromatin packaging influences gene 
expression. The technology uses the Tn5 trans-
posase, which tags open chromatin regions with 
sequencing adaptors. Tagged regions are then 
PCR amplified and sequenced. Several single-cell 
platforms, including the Chromium systems (10× 
Genomics), enable single-cell ATAC-seq.

Single Cell Proteomics

Single-cell proteomics is a field in rapid devel-
opment aiming at comprehensively measuring the 
expression patterns of proteins at a given point in 
time at the single-cell level. Single-cell proteom-
ics adds another level of investigation beyond the 
above-described omics methods, as it can inter-
rogate the post-translational states of a single cell. 
Most traditional methods for identifying and quan-
tifying proteins rely on antibodies barcoded with 
DNA sequences, fluorophores, or transition metals, 
as well as mass spectrometry (MS). These meth-
ods have limited identification capabilities because 
they cannot simultaneously identify a large num-
ber of proteins and frequently rely on antibodies 
with low target specificity, resulting in nonspecific 
protein detections201. Furthermore, some technical 
issues concerning the amount of sample required 
and the extent of protein coverage complicate the 
application of traditional mass spectrometry to sin-
gle cells. These challenges are now being addressed 
by emerging MS-based technologies that do not 
rely on antibodies, such as Single Cell ProtEomics 
by MS (SCoPE-MS)202 and its second-generation 
approach, SCoPE2203. This methodology allows 
for high-throughput protein quantification in single 
cells using mass spectrometry. Single cells are iso-
lated by FACS or CellenONE into multiwell plates, 
lysed, and then their peptides are tagged by isobar-
ic labeling for multiplexed analysis and quantifica-
tion by mass spectrometry.

A special mention should be made of the emerg-
ing field of single-cell metabolomics, which theo-
retically connects genomics, transcriptomics, and 
proteomics. Single-cell metabolomics establishes 
links between genotype and phenotype, which can 
be essential for evaluating how effective drugs are 
delivered to particular cells204. A single-cell me-
tabolome can be profiled using different method-
ologies, such as nanospray desorption electrospray 
ionization (nano-DESI)205 and laser desorption/
ionization droplet delivery mass spectrometry 
(LDIDD-MS)206.

Single Cell Multilayered Omics

Once a single cell is used for any single om-
ics layer, the same cell cannot be used anymore to 
measure other layers of omics information. This 
single unimodal factor can be a big limitation in 
multi-omics studies, as multi-omics data inferred 
from different cells may suffer from both biolog-
ical and technical variations. Each type of omics 
is, in fact, measured using unique protocols from 
different cells, which could impact the robustness 
of the analysis. However, currently, a number of 
techniques have been developed to analyze two or 
more omics layers from the same single cell207. For 
measuring two different omics modalities, G&T-
seq208 and DR-seq209 allow an integrated and simul-
taneous genome and transcriptome analysis. Both 
methods achieve an accuracy in the copy number 
and expression profile comparable to that attained 
by the unimodal methods previously mentioned. 
For simultaneous profiling of the transcriptome and 
methylome from the same cell, scM&T-seq210 and 
scMTseq211 can be used. ScDam&T-seq212 can be 
employed to profile the transcriptome and to mea-
sure protein-DNA interactions in the same cell at 
the same time. The ability to simultaneously study 
three different omics in a single cell is becoming 
more common. Examples include scTrio-seq213 for 
sequencing the genome (copy number variations), 
methylome, and transcriptome; scCOOL-seq214 for 
estimating chromatin state, DNA methylation, and 
the genome (copy number variation and ploidy); 
and scNMT-seq215 for investigating the transcrip-
tome, DNA methylation, and nucleosome.

Conclusions 

The importance of cancer progression fu-
elled by clonal evolution has grown in the last ten 
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years. Tumor heterogeneity, the most common 
cause of antitumor drug resistance, is caused by 
the genetic, epigenetic, and microenvironmental 
selective pressures that cancer cells face as the 
disease progresses. Many evolutionary models, 
including parallel evolution and linear evolution 
based on Darwin’s theory, have been adopted in 
an effort to understand the evolutionary causes 
of cancer. However, mounting evidence suggests 
that the dynamics of cancer evolution sometimes 
appear to defy Darwinian principles. Darwinian 
mechanisms have historically been grounded on 
a gene-centric understanding of evolution, but 
increasing evidence suggests that non-genetic 
factors, such as cell plasticity and tumor microen-
vironment, play a role in the evolution of cancer. 
Whether viewed from a Darwinian or non-Dar-
winian perspective, many of the various evolu-
tionary patterns result in cancer drug resistance. 
The probability of therapy resistance and metas-
tasis is likely explained by cell traits that promote 
adaptation and cancer evolution. Understanding 
the mechanisms underlying cancer evolution 
would allow for the development of therapies that 
target the cell’s ability to evolve while also im-
proving drug efficacy and preventing metastases. 
This is a win-win situation.

With the advent of single-cell sequencing 
technologies, cancer research is entering a new 
phase. These new sequencing technologies have 
enormous potential for use in cancer research, al-
lowing researchers to answer a wide range of bio-
logical and clinical questions (Figure 2). SCS can 
be used to accurately compare the gene expres-
sion of different cancer cells and their (epi-)genet-
ic profiles, including those from primary and met-
astatic tumors, and thereby to create omics maps 
of single cancer cells. It is now possible to identify 
clinically significant tumor subpopulations, such 
as those with drug resistance or metastatic pro-
gression, thanks to the widespread adoption and 
increased throughput of scRNA-seq platforms. 
Furthermore, scDNA-seq methods can be used to 
determine whether resistant clones acquired resis-
tance mutations as a result of treatment (acquired 
resistance) or if they existed in the tumor mass 
prior to therapy and were selected after (adaptive 
resistance). With the advancement of technology, 
mass spectrometry is also becoming able to char-
acterize thousands of proteins at the level of the 
individual cell. Experiments that evaluate multi-
ple omics layers in the same single cell provide 
new insights into the mechanisms that govern the 
state, diversity, and evolution of cancer cells.

In closing, the studies we examined herald the 
beginning of a new era in single-cell research, an 
omics-oriented era that is rapidly expanding in ca-
pacity, scale, and resolution. SCS and multi-omics 
have already revolutionized many areas of cancer 
research and are envisioned to have an even great-
er impact in the clinic. Overall, we anticipate that 
the adoption of SCS in oncology over the next ten 
years will significantly improve cancer detection 
and treatment, as well as significantly enhance 
cancer patient diagnosis and care.
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