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Abstract. – OBJECTIVE: The aim of this 
study was to investigate the causes, diagnos-
tic markers, and treatment methods for recur-
rent pregnancy loss (RPL) using bioinformatics 
approaches.

MATERIALS AND METHODS: Bioinformat-
ics methods were utilized to analyze gene ex-
pression databases to identify key genes and 
modules associated with RPL. Weighted gene 
co-expression network analysis (WGCNA) was 
employed to identify gene sets related to mater-
nal-fetal immunity. Gene set variation analysis 
(GSVA) and protein-protein interaction networks 
were used to explore signaling pathways and 
molecular interactions in RPL. Immune cell infil-
tration was assessed using single-sample gene 
set enrichment analysis (ssGSEA). 

RESULTS: Thirteen genes were identified as 
potential diagnostic markers, some of which 
were involved in placental amino acid transport, 
glucose absorption, and reactive oxygen spe-
cies production. Several gene sets related to 
protein transport, steroid synthesis, and glycos-
aminoglycan degradation were found to be as-
sociated with RPL. Immune cell infiltration anal-
ysis found that CD56bright NK cells and mono-
cytes showed significantly increased infiltra-
tion in RPL and were associated with key hub 
genes. The validation of hub genes, includ-
ing PCSK5, CCND2, SLC5A3, RASAL1, MYZAP, 
MFAP4, and P2RY14, as potential diagnostic 
markers, showed promising value. 

CONCLUSIONS: This study contributes to a 
better understanding of the etiology of RPL and 
potential diagnostic markers. The identified im-
mune-related gene sets, signaling pathways, 
and immune cell infiltrations provide valuable 
insights for future research and therapeutic ad-
vancements in RPL.
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Introduction

Recurrent pregnancy loss (RPL), commonly 
referred to as recurrent miscarriage, is a distress-
ing condition marked by the consecutive loss of 
two or more pregnancies before the 20th week of 
gestation. It affects around 1-2% of couples trying 
to conceive and places a significant emotional 
and physical burden on them1,2. Despite thorough 
clinical investigation, the multifactorial and com-
plex nature of RPL leaves around 50% of cases 
unexplained3. Genetic, hormonal, anatomical, 
infectious factors, and immune disruption have 
been linked to RPL. 

Currently, the treatment options for RPL have 
limited efficacy. Treatment strategies for RPL 
vary based on the identified causes, resulting in 
enhanced pregnancy success rates among spe-
cific patient populations4. Nevertheless, existing 
treatment interventions exhibit suboptimal effec-
tiveness for RPL cases with unidentified causes. 
Additionally, diagnosing RPL becomes challeng-
ing in patients without a history of consecutive 
miscarriages. Therefore, the identification and 
screening of marker genes play a pivotal role 
in facilitating early RPL diagnosis, discovering 
new therapeutic targets, and ultimately enhanc-
ing pregnancy outcomes.

Unexplained recurrent pregnancy loss (URPL) 
refers to the consecutive occurrence of two or 
more spontaneous miscarriages, but the specific 
cause remains unclear even after common re-
productive system issues have been ruled out. 
Current research in the literature suggests that 
immune-related factors may be associated with 
URPL. Some women with URPL have immune 
system abnormalities, such as decreased natural 
killer cell activity or T cell subset imbalance. In 
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addition, some studies5 also indicate the possi-
ble existence of abnormal immunological factors 
such as anti-embryo antibodies or anti-phospho-
lipid antibodies related to URPL.

The maternal immune system needs to main-
tain a delicate balance between creating an opti-
mal immune environment for fetal development 
and safeguarding against potential threats like in-
fections and malignancies. Previous research6 has 
found that many immune-related diseases may be 
associated with miscarriage, such as Hashimoto’s 
thyroiditis, systemic lupus erythematosus, anti-
phospholipid syndrome, asthma, and so on. Suc-
cessful pregnancy outcomes depend on diverse 
immune regulatory processes, involving immune 
cell activation, modulation, cytokine signaling 
pathways, and immune cell infiltration7,8. Abnor-
malities in the maternal-fetal immune interface, 
including aberrant immune cell counts, increased 
cytotoxicity, and imbalances in Th1/Th2/Th17 
and Treg cells, are believed to be significant con-
tributors to miscarriage in RPL patients9,10. Pre-
vious studies11,12 have demonstrated elevated NK 
cell density in RPL and repeated implantation 
failure, along with an increased presence of mac-
rophages in RPL patients. Cytotoxic T cells and 
dendritic cells (DCs) are also involved in immune 
regulation during pregnancy13.

The use of bioinformatic methods has become 
increasingly popular for analyzing large datasets, 
such as high-throughput and microarray data. 
These methods help identify genes that are ex-
pressed differently (known as differentially ex-
pressed genes or DEGs) and enable various types 
of analyses14,15. This approach has been proven to 
be highly effective in uncovering the underlying 
mechanisms of many human diseases. Intending 
to gain insights into the development of RPL, 
we conducted a comprehensive genomic analysis 
using publicly available datasets. Our goal was 
to identify potential key genes, critical modules, 
pathways, and infiltrating immune cells associat-
ed with the pathogenesis of RPL.

 
Materials and Methods

Data Download
The data utilized in this study were obtained 

from the publicly accessible GEO database (Gene 
Expression Omnibus, https://www.ncbi.nlm.nih.
gov/geo/). The whole-genome expression profiles 
of individuals with recurrent pregnancy loss were 
obtained by retrieving and downloading the rel-

evant data from the GEO database through the 
R package “GEOquery” (version 2.62.2). The 
dataset GSE165004 comprised 24 patients with 
recurrent pregnancy loss and 24 control samples. 
GSE180485 included 16 RPL patients and 1 con-
trol sample (patients with a history of three or 
more miscarriages and no prior live births were 
defined as the disease group, and 16 samples were 
selected. Patients with no history of miscarriage 
and having had live births were designated as 
the control group, and one sample was selected.), 
while GSE26787 encompassed 5 RPL patients 
and 5 control samples.

Non-biological technical biases causing batch 
effects were corrected using the ComBat meth-
od from the R package “sva” (version 3.42.0)16. 
The effectiveness of the correction was assessed 
through principal component analysis (PCA). The 
data access policies of each respective database 
were adhered to in this study.

Maternal-fetal immune-related genes were re-
trieved from Li et al17 and Alecsandru et al18 
(Supplementary Table I).

Differential Analysis of RPL
The R package “limma (version 3.50.0)”19 was 

utilized to identify differentially expressed genes 
(DEGs) between the control group (n=30) and the 
RPL group (n=45) with the criteria of |log2Fold 
Change| >0.5 and p<0.05, which were used for 
subsequent analyses. Heatmaps were generated 
using the R package “pheatmap” (version 1.0.12), 
with Euclidean distance and hierarchical cluster-
ing methods used for clustering. 

Gene Set Variation Analysis (GSVA)
Gene Set Variation Analysis (GSVA) is an unsu-

pervised and non-parametric gene set enrichment 
method that allows the assessment of associations 
between gene expression profiles and biological 
pathways or gene features. To investigate the bio-
logical functional differences between the control 
and RPL groups, the “c2.cp.kegg.v7.5.1.symbols” 
gene set from the MSigDB database (http://soft-
ware.broadinstitute.org/gsea/msigdb) was used as 
the reference gene set, and GSVA analysis was 
performed using the R package “GSVA (version 
1.42.0)”. The results were visualized using the R 
package “pheatmap (version 1.0.12)”. Additional-
ly, 50 hallmark gene sets were downloaded from 
the MSigDB database as reference gene sets, and 
the GSVA scores of each gene set were calculated 
in different samples using the ssGSEA function 
from the GSVA package. Differences in GSVA 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I-90.pdf
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scores between the control group and the RPL 
group for different gene sets were compared us-
ing the Limma package. 

Weighted Gene Co-expression Network 
Analysis (WGCNA) and Identification of 
Significant Modules

The WGCNA algorithm was implemented 
using the R package WGCNA (version 1.70-3) 
to construct a co-expression network20. Gene 
expression profile similarity was evaluated by 
calculating Pearson’s correlation coefficients, and 
the coefficients were weighted using a power 
function to obtain a scale-free network. The R 
package “PickSoftThreshold” was used to raise 
the co-expression similarity to the power of β=14 
and to establish a weighted adjacency matrix. 
Gene modules represented sets of densely con-
nected genes in the co-expression network. Gene 
modules were identified by WGCNA using hi-
erarchical clustering and were represented with 
colors. The dynamic tree-cut method was em-
ployed to detect modules, whereby the adjacency 
matrix (a measure of topological similarity) was 
transformed into a topological overlap matrix 
(TOM). The modules were identified through 
clustering analysis. Pearson’s correlation analysis 
was conducted to assess the association between 
modules and maternal-fetal immunity, by calcu-
lating the correlation between module eigengenes 
(MEs) and maternal-fetal immunity. The mod-
ules that showed significant association with ma-
ternal-fetal immunity were obtained. Heatmaps 
were generated to visualize the co-expression 
module structure, utilizing gene network topo-
logical overlap. Hierarchical clustering trees and 
corresponding eigengene heatmaps were plotted 
to summarize the relationships between modules. 
Maternal-fetal immune-related differentially ex-
pressed genes (maternal-fetal immune-related 
DEGs) were obtained from the intersection of 
DEGs and genes within the maternal-fetal im-
mune-related modules. 

GeneMANIA
GeneMANIA website (http://genemania.org) 

is a valuable resource that can predict func-
tional relationships between genes and central 
genes, including protein-protein interactions, pro-
tein-DNA interactions, pathways, physiological 
and biochemical reactions, co-expression, and 
co-localization21. The GeneMANIA website was 
used to construct key genes’ protein-protein in-
teraction (PPI) network. 

Receiver Operating Characteristic 
(ROC) Curve

The Receiver Operating Characteristic (ROC) 
curve is widely used as an effective method for 
evaluating the performance of diagnostic tests. 
The ROC curve is a comprehensive index reflect-
ing the sensitivity and specificity of continuous 
variables, and it represents the relationship be-
tween sensitivity and specificity graphically. The 
most commonly used measure is the Area Under 
the Curve (AUC), derived from the receiver’s 
operating characteristic curve. The R package 
“pROC” (version 1.18.0) was utilized to generate 
ROC curves and calculate the Area Under the 
Curve (AUC) for the selection of feature genes 
and evaluation of their diagnostic value22. The 
area under the ROC curve (AUC) generally rang-
es between 0.5 and 1, where a value closer to 1 
indicates better diagnostic performance. 

Immune Infiltration Analysis
Single-sample GSEA (ssGSEA) is a variation 

of the Gene Set Enrichment Analysis (GSEA) 
algorithm that provides a score for each sample 
and gene set pair instead of calculating enrich-
ment scores for groups of samples (i.e., Control 
vs. Disease) and sets of genes (i.e., pathways). It 
calculates separate enrichment scores for each 
pairing of a sample and gene set. Each ssGSEA 
enrichment score indicates the extent to which 
the genes within a specific gene set are collective-
ly up or downregulated in a sample. 

Based on the 28 types of immune cells down-
loaded from the TISIDB (Tumor and Immune 
System Interactions Database) (http://cis.hku.hk/
TISIDB/index.php), including Activated CD8 T 
cell, Central memory CD8 T cell, effector mem-
ory CD8 T cell, activated CD4 T cell, central 
memory CD4 T cell, effector memory CD4 T 
cell, T follicular helper cell, Gamma delta T cell, 
type 1 T helper cell, Type 17 T helper cell, Type 
2 T helper cell, regulatory T cell, activated B cell, 
Immature B cell, memory B cell, natural killer 
cell, CD56bright natural killer cell, CD56dim 
natural killer cell, myeloid-derived suppressor 
cell, natural killer T cell, activated dendritic 
cell, plasmacytoid dendritic cell, immature den-
dritic cell, macrophage, eosinophil, mast cell, 
monocyte and neutrophil23, every immunocyte’s 
relative enrichment score was quantified from 
each sample’s gene expression profile. Variations 
of the immune cell infiltration level among sam-
ples in RPL and control groups were illustrated 
through the R package ggplot2 (version 3.3.6)24.
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RBP-mRNA Network Construction
The widely used open-source platform Star-

Base (https://starbase.sysu.edu.cn/tutorialAPI.
php#RBPTarget) was utilized for analysis of 
ncRNA interactions and to study the associa-
tions between mRNA and RNA-binding pro-
teins (RBPs) expression using CLIP-seq, degra-
dome-seq, and RNA-RNA interaction data. To 
identify key mRNA-RBP pairs in RPL, we de-
fined the cutoff criteria as p<0.05, clusterNum≥5, 
and clipExpNum≥5. Subsequently, the RBP-mR-
NA network was built with the software Cytos-
cape (version 3.9.1).

Statistical Analysis
The statistical analyses were performed using 

R software version 4.1.2 (Vienna, Austria). The 
Spearman’s correlation test was used to infer the 
correlation between two variables. Differences 
between two groups were assessed using the 
Wilcoxon test, while differences among three 
or more groups were evaluated using the Kru-
skal-Wallis test. We considered p-values lower 
than 0.05 in both tails to be indicative of statisti-
cal significance.

Results

DEGs Identification
Through the comparison of recurrent pregnan-

cy loss samples and a healthy control group, a to-
tal of 299 differentially expressed genes (DEGs) 
were identified, and these genes showed statis-
tically significant differences between the two 
groups (p<0.05, |Log2 fold change|>0.5). Among 
the recurrent miscarriage samples, 154 genes 
were upregulated, and 145 genes were down-
regulated. All DEGs were visualized through a 
volcano plot (Figure 1A). In addition, a heat map 
was used to display the top 5 upregulated genes 
(TSPAN14, PCGF1, EMD, ZDHHC9, FAM166B) 
and the top 5 downregulated genes (ZNF90, 
PSIP1, SNRPE, C2orf69, CCNYL1) (Figure 1B). 
Rank-sum tests also revealed significant differ-
ences in the expression of the top ten genes be-
tween recurrent miscarriage samples and control 
samples (p<0.05, Figure 1C).

GSVA
To explore the functional annotations of re-

current pregnancy loss, we performed GSVA 
analysis to assess the relative expression dif-

ferences of pathways between the two groups. 
The GSVA analysis enriched numerous pathways 
with distinct expressions visualized through a 
heatmap. Compared to the control group, the RPL 
group exhibited significantly lower expression in 
the KEGG_PROTEIN_EXPORT and KEGG_
RENIN_ANGIOTENSIN_SYSTEM pathways, 
while the expression of pathways related to 
KEGG_TERPENOID_BACKBONE_BIOSYN-
THESIS and KEGG_GLYCOSAMINOGLY-
CAN_DEGRADATION was significantly higher 
(Figure 2). 

Construction of Weighted Gene 
Co-expression Network and 
Module Identification

WGCNA was conducted to study gene sets 
related to maternal-fetal immunity. Scale in-
dependence and average connectivity analysis 
showed that when the minimum soft thresh-
old (β) was set to 14 (Figure 3A), the average 
connectivity was close to 0 and the scale inde-
pendence was above 0.85. Five co-expression 
modules were identified, with irrelevant genes 
assigned to the grey module, which was disre-
garded in subsequent analysis (Figure 3B). To 
understand the relationships between modules 
and determine their relevance, module eigen-
genes (MEs) were correlated. A feature gene 
network was visualized through a dendrogram 
and a heatmap (Figure 3C). To comprehend 
the physiological significance of genes within 
modules, the 5 MEs were associated with ma-
ternal-fetal immunity, and the most significant 
associations were sought. Based on the heat-
map of module-trait relationships (Figure 3D), 
genes clustered in the blue module (n=925) ex-
hibited the strongest negative correlation with 
maternal-fetal immunity (r=-0.64, p<0.05). 
Consequently, the blue module was primarily 
considered as it may more accurately indicate 
maternal-fetal immunity. 

A total of 13 immune-related DEGs were ob-
tained by taking the intersection of DEGs and 
the genes in the maternal-fetal immune-related 
modules, which were regarded as hub genes 
(Supplementary Table II). 

Hub Gene Interaction Analysis
We used the GeneMANIA database to con-

struct a PPI network (Figure 4) for a total of 33 
genes, including 13 hub genes with known in-
teractions and 20 genes associated with the hub 
genes. 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-II-50.pdf
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Diagnostic Value of Hub Genes
To further validate the diagnostic value of hub 

genes, we used ROC curves to assess the hub 
genes. We found that DEK (AUC=0.813), CCND2 
(AUC=0.742), UCP2 (AUC=0.736), TRIM6 
(AUC=0.715), RASAL1 (AUC=0.707), SLC38A5 
(AUC=0.688), CD109 (AUC=0.687), SLC5A3 
(AUC=0.686), MYZAP (AUC=0.677), MFAP4 
(AUC=0.675), CCDC64B (AUC=0.669), PCSK5 
(AUC=0.668), P2RY14 (AUC=0.66) all had an 
area under the ROC curve (AUC) greater than 
0.6 (Figure 5A-5L, (Supplementary Figure 1). 
This indicates that hub genes have discriminatory 
capacity as potential biomarkers for RPL. 

Immune Infiltration
Immune cell infiltration may play an important 

role in the pathogenesis of recurrent pregnancy 

loss. Therefore, we investigated the association 
between RPL/control samples and infiltrating 
immune cells. Among the 28 types of immune 
cells, there were significant differences in the im-
mune cell infiltration abundance between the two 
groups for 5 immune cell types (p<0.05) (Figure 
6A). Among them, two immune cell types (CD-
56bright natural killer cell, Monocyte) showed 
significantly higher levels of infiltration in the 
RPL group compared to the control group (Figure 
6A). The overall level of immune cell infiltration 
between the RPL and control groups is shown in 
Figure 6B.

We also examined the significant correlations 
between each hub gene and the correspond-
ing immune cells. CCDC64B demonstrated a 
significant correlation with regulatory T cells 
(R=-0.593, p<0.001) (Figure 6C); UCP2 exhib-

Figure 1. DEGs related to recurrent pregnancy loss (RPL). A, The volcano plot illustrates the distribution of DEGs between 
RPL and control group samples. Gray dots indicate genes with no significant expression correlation. B, The heatmap shows 
the top 5 upregulated and downregulated DEGs. C, The boxplot displays the expression level differences of genes between 
RPL and control group samples, with significance determined by the rank-sum test. The asterisks indicate the p-values 
(****p<0.0001, ***p<0.001, **p<0.01, *p<0.05).

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-48.pdf
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ited a significant correlation with monocytes 
(R=0.621, p<0.001) (Figure 6D).

Additionally, correlations among immune 
cells were investigated, and there was a general 
positive correlation among immune cells (Fig-
ure 6E).

Signaling Pathways Related to 
Hub Genes

Further analysis using Gene Set Variation 
Analysis (GSVA) was conducted to investigate the 
differences between RPL patients and the control 
group in 50 Hallmark signaling pathways. In 

Figure 2. Differentially enriched pathways between RPL and control. A, Heatmap for significantly enriched pathways. B, 
Differences in pathway activities scored by GSVA.
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RPL patients, three Hallmark signaling pathways 
were significantly upregulated, which are HALL-
MARK_BILE_ACID_METABOLISM, HALL-
MARK_KRAS_SIGNALING_DN, HALL-
MARK_PEROXISOME. Nine pathways were 
significantly downregulated, including HALL-
MARK_ANGIOGENESIS, HALLMARK_API-
CAL_SURFACE, HALLMARK_EPITHELI-
AL_MESENCHYMAL_TRANSITION, HALL-
MARK_ESTROGEN_RESPONSE_EARLY, 
HALLMARK_IL2_STAT5_SIGNALING, 
HALLMARK_IL6_JAK_STAT3_SIGNALING, 
HALLMARK_INTERFERON_ALPHA_RE-

SPONSE, HALLMARK_KRAS_SIGNALING_
UP, HALLMARK_UV_RESPONSE_DN (Fig-
ure 7A).

We also analyzed the correlation between the 
five most significantly differentially expressed 
hub genes and 50 Hallmark signaling pathways 
(Figure 7B). 

Construction and Functional 
Annotation of the Crosstalk Between 
the Hub mRNAs and RBPs

To investigate the interaction between RNA 
binding proteins (RBPs) and mRNA, we utilized 

Figure 3. Construction of WGCNA Co-expression Network. A, Soft threshold β=14, scale-free topology fitting index 
(R2). B, Analysis of gene expression networks in RPL identified different modules of co-expression data. C, Relationships 
between modules. Top: Hierarchical clustering of module eigengenes summarizing the modules identified in the clustering 
analysis. Branches (meta-modules) in the dendrogram group positively correlated feature genes together. Bottom: Heatmap of 
correlations in the feature gene network. Each row and column in the heatmap corresponds to the feature genes of a module 
(color-coded). In the heatmap, red indicates high adjacency, and blue indicates low adjacency. Red squares along the diagonal 
represent meta-modules. D, Associations between consensus module eigengenes and maternal-fetal immunity. Each row in 
the table corresponds to a consensus module, and each column to a sample or trait. Numbers in the table report the correlations 
of the corresponding module eigengenes and traits, with the p-values printed below the correlations in parentheses. The color-
coded legend indicates the color-coded representation of the correlations.
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the StarBase online database to search for 13 hub 
mRNAs and retrieved the corresponding mRNA/
RBP pairs for 11 hub mRNA. Using the provided 
relationships between target genes from the on-
line dataset, we constructed an RBP-mRNA net-
work comprising 76 nodes, 65 RBPs, 11 mRNAs, 
and 250 edges. Figure 8 illustrates the network. 

Verification of Hub Genes
To further validate the robustness of hub genes 

as potential biomarkers, we conducted ROC anal-
ysis on the independent GEO dataset GSE161969 
to validate the diagnostic performance of hub 
genes in RPL. In the dataset GSE161969 (Sup-
plementary Figure 2), PCSK5 (AUC=1), CCND2 

(AUC=0.917), SLC5A3 (AUC=0.917), RASAL1 
(AUC=0.833), MYZAP (AUC=0.833), MFAP4 
(AUC=0.833), P2RY14 (AUC=0.75) the validation 
results showed that the hub genes as potential 
biomarkers of RPL has strong robustness.

Discussion

Recurrent pregnancy loss (RPL) is a condition 
that significantly impacts women’s reproductive 
health. The incidence of miscarriage is challeng-
ing to quantify, with most studies1 indicating 
that natural miscarriage transpires in 15-25% 
of pregnancies. Recurrent pregnancy loss, as 

Figure 4. Interaction analysis of hub genes characterized gene co-expression network.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-38.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-38.pdf
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Figure 5. ROC curves of hub genes. A, DEK. B, CCND2. C, UCP2. D, TRIM6. E, RASAL1. F, SLC38A5. G, CD109. H, 
SLC5A3. I, MYZAP. J, MFAP4. K, CCDC64B. L, PCSK5.
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Figure 6. Differences in immune infiltration between the RPL and control groups. A, Bar plot showing the abundance of 
immune infiltration. B, Heatmap displaying the degree of immune infiltration. C, Scatter plot depicting the correlation between 
UCP2 and monocytes. D, Scatter plot depicting the correlation between CCDC64B and regulatory T cells. E, Correlation 
among immune cells. Asterisks indicate p-values: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.
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defined by ESHRE2,25, encompasses the con-
secutive loss of two or more pregnancies before 
28 weeks in the same partner, and is observed 
in 1-2% of women. RPL imposes significant 
physical and psychological distress on women 
and places a substantial emotional burden on 
families. The etiology of RPL is intricate and 
characterized by substantial heterogeneity. Es-
tablished causes encompass genetic, anatomical, 
endocrine, coagulation, infectious, immune, and 
psychological factors1. Notably, immune factors 
have emerged as a prominent and demanding 
area of investigation in reproductive research. 
Clinically, almost half of recurrent pregnancy 

loss instances are categorized as unexplained, 
yielding substantial challenges in clinical iden-
tification and early intervention. Furthermore, 
diagnosing recurrent pregnancy loss relies on 
the presence of prior miscarriages, posing a 
challenge in identifying miscarriage risks and 
implementing early interventions for women 
without a history of miscarriage. Therefore, the 
discovery of precise diagnostic markers and 
analysis of immune cell infiltration patterns in 
RPL holds immense significance in enhancing 
pregnancy outcomes for affected patients. The 
rapid advancements in science and technology 
have led to bioinformatics emerging as a potent 

Figure 7. Correlation between hub genes and 50 HALLMARK signaling pathways. A, Comparison of 50 HALLMARK 
signaling pathways between the RPL group and the control group. B, Correlation between hub genes and 50 HALLMARK 
signaling pathways. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.
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approach for molecular marker screening. In 
this study, we attempted to identify diagnostic 
markers for RPL and further explore the role of 
immune cell infiltration in RPL.

During the process of pregnancy, there are 
two major maternal-fetal immune interfaces. The 
first interface involves the interaction between 
maternal immune cells in the decidua and fetal 
trophoblast cells, which disappear along with 
the regression of invasive trophoblast cells and 
the degradation of related decidual lymphocytes 
in the third month of pregnancy. The second 
interface involves the interaction between ma-
ternal immune cells in the circulatory system 
and syncytiotrophoblast cells on the surface of 
the placental villi, which appear with the initia-
tion of uteroplacental circulation at 8-9 weeks26. 
In the human placenta, the syncytiotrophoblast 

surface lacks MHC expression, which means it 
is incapable of triggering antigenic stimulation 
in maternal T cells. In this regard, it is widely 
accepted that immune interactions between the 
mother and fetus in humans may primarily be 
mediated by NK cells rather than T cells, like the 
local immune environment in the uterus27.

Among the 13 hub genes identified in this study, 
namely DEK, CCND2, UCP2, TRIM6, RASAL1, 
SLC38A5, CD109, SLC5A3, MYZAP, MFAP4, 
CCDC64B, PCSK5, and P2RY14, SLC38A5 and 
SLC5A3 belong to the solute carrier family 38 
(SLC38) and solute carrier family 5 (SLC5), re-
spectively. The SLC38 functions as a transporter 
for amino acids, facilitating their movement from 
the extracellular environment into the cells. This 
transport of amino acids across the placenta, 
facilitated by amino acid transporters, plays a 

Figure 8. RBP-mRNA regulatory network. Blue represents RNA binding proteins (RBPs), and yellow represents mRNAs.
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crucial role in providing energy and nutrients 
for the developing fetus. Aberrations in placental 
amino acid transporters have been implicated in 
abnormalities in fetal growth and development28. 
Members of the solute carrier family 5 (SLC5) 
primarily mediate the absorption and transport 
of monosaccharides and polysaccharides29. Un-
coupling protein 2 (UCP2) is located in the inner 
mitochondrial membrane and downregulates the 
production of reactive oxygen species (ROS). In 
models30 of acute infection, UCP2 exhibits regu-
latory effects on innate immunity by modulating 
ROS production, cytokine, and chemokine gen-
eration, as well as the recruitment of phagocytes. 
CD109 is a surface molecule antigen belonging to 
the cluster of differentiation (CD) family. With-
in the transforming growth factor-beta (TGF-β)/
Smads signaling pathway, CD109 serves as a 
novel accessory receptor that negatively regu-
lates TGF-β in human keratinocytes. It plays a 
significant role in the initiation and progression 
of specific tumors31.

The AUC value of DEK was determined to be 
0.813 based on the ROC curve analysis, suggest-
ing its excellent diagnostic value. This implies 
that DEK exhibits a robust capability to distin-
guish RPL from the control group. Nonetheless, 
future validation of DEK as a biomarker for 
RPL will necessitate increasing the sample size. 
We further validated the potential biomarkers of 
recurrent pregnancy loss (RPL), and the results 
show that hub genes have strong robustness. 
ROC analysis conducted on the independent GEO 
dataset GSE161969 demonstrated the excellent 
diagnostic performance of hub genes as potential 
biomarkers. These results strongly support the 
robustness and accuracy of hub genes as potential 
biomarkers for recurrent pregnancy loss. These 
findings provide strong evidence for the potential 
application of hub genes in clinical diagnosis, 
offering new perspectives and methods for early 
screening and diagnosis of RPL.

GSEA provides valuable insights into genes 
with relatively smaller fold changes on a large 
scale. Through GSEA analysis of gene profiles 
from datasets, we discovered numerous gene 
sets that were highly enriched in the RPL group. 
One of these gene sets, ‘RENIN ANGIOTEN-
SIN SYSTEM’, refers to the Renin-Angiotensin 
System (RAS) pathway, which plays a crucial 
role in regulating blood pressure, electrolyte 
balance, and fluid homeostasis. Another gene 
set, ‘PROTEIN EXPORT’, involves the gener-
al biological process of protein export, which 

entails the transportation of proteins from the 
cytoplasm to specific cellular compartments or 
extracellular spaces. Additionally, ‘TERPENOID 
BACKBONE BIOSYNTHESIS’ corresponds to 
the terpenoid backbone biosynthesis pathway in 
the KEGG database. Terpenoids, also known as 
isoprenoids, are a diverse class of natural prod-
ucts found in various organisms, including plants, 
fungi, and bacteria. They have important roles in 
cellular processes and demonstrate a wide range 
of biological activities. Lastly, ‘KEGG GLYCOS-
AMINOGLYCAN DEGRADATION’ represents 
the glycosaminoglycan (GAG) degradation path-
way. Glycosaminoglycans are complex polysac-
charides present in the extracellular matrix and 
cell surfaces of various organs and tissues. They 
play essential roles in cellular processes, tissue 
development, and structural integrity. 

To investigate the impact of immune cell in-
filtration in RPL further, we conducted a thor-
ough evaluation of RPL immune infiltration using 
ssGSEA. Our findings suggest a potential associa-
tion between increased infiltration of CD56bright 
natural killer cells and monocytes and the occur-
rence and development of RPL. Upon analyzing 
the correlation between UCP2 and immune cells, 
a significant positive correlation with monocytes 
was observed. Monocytes serve as precursor cells 
for macrophages in the bloodstream. Within the 
decidual immune cell population, decidual macro-
phages comprise 10%. Previous studies32 have sub-
stantiated the pivotal role of decidual macrophages 
in establishing and maintaining immune tolerance 
at the maternal-fetal interface, promoting tropho-
blast invasion, facilitating angiogenesis, remodel-
ing spiral arteries, and engulfing apoptotic cells. 
Moreover, preliminary research33 has indicated 
the involvement of UCP2 in regulating inflamma-
tion and metabolic processes within macrophages. 
Drawing upon these findings, we hypothesize that 
UCP2 may impact the functionality of monocytes 
and macrophages, thus potentially contributing to 
the occurrence of RPL.

Conclusions

Our study identified the DEGs, WGCNA mod-
ules, hub genes, enriched pathways, and infil-
trated immune cells that likely contribute to the 
development of RPL. These findings enhance our 
understanding of the underlying mechanisms of 
RPL and have the potential to influence future 
advancements in disease theranostics.
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