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Introduction 

Breast cancer differs in its presentation, histo-
logical features, and clinical course, and molecu-
lar subtypes1-3.

Breast cancer is divided into four major molec-
ular subtypes according to gene expression analy-
sis: Luminal-A, Luminal-B, HER-2 (+), and basal/
Triple (-). The inclusion of hormone therapy and 
targeted medicines based on the identification of 
molecular subtypes in the treatment strategy have 
improved survival rates. The disease pattern, re-
sponse to treatment, prognosis, and survival of mo-
lecular subtypes  varies. Luminal-A cancers have 
the best prognosis. They are well-differentiated, 
have the lowest local recurrence and recurrence 
rates. Their metastases are most commonly seen 
in the bones. Luminal-B cancers exhibit worse dif-
ferentiation, a worse prognosis, and lower levels of 
ER and PR expression than Luminal-A cancers. 
Like Luminal-A cancers, Luminal-B cancers me-
tastasize to the bone. Chemotherapeutics (CT) is 
added to the risk group in Luminal-B along with 
hormone therapy in the treatment protocol of these 
two subtypes. HER-2 (+) cancers have a moderate 
to high nuclear grade. Their metastasis most com-
monly occurs in the liver and brain. 30 to 40% may 
also be hormone receptor-positive. The treatment 
protocol includes HER2-targeting agents and KT. 
The triple (-) subtype has the worst prognosis of 
the subtypes. Early relapse risk is high, distant or-
gan metastases are common. Lung and brain are 
the most common metastases. CT are used in treat-
ment protocols4-8.

Despite the clinical significance of molecular 
subtypes, there is no available low-cost genetic 
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testing yet. Immunohistochemical (IHC) analy-
sis is used to perform molecular subtyping based 
on ER, PR, HER-2 status, and ki-67 prolifera-
tion indicators. While IHC analysis does provide 
clinical assistance, genetic testing has a 40-100% 
agreement and has been demonstrated to be less 
powerful in predicting patient outcomes9.

As a result, there has been a considerable de-
mand for more accurate techniques to differen-
tiate between molecular subtypes, opening the 
door for radiogenomics. There is qualitative and 
quantitative research on MR monitoring features 
related to molecular subtypes of breast cancer in 
the literature10-14.

Breast MRI is the most sensitive imaging 
method in the diagnosis and preoperative staging 
of breast cancer15. Recent advancements in breast 
MRI techniques are increasing MRI’s relevance 
in identifying tumor morphology and function16,17.

The goal of the present study was to investi-
gate the MR imaging properties of molecular sub-
types, according to the BIRADS atlas, and thus 
to answer the question of whether breast MRI can 
contribute to the treatment plan by assisting with 
molecular subtype characterization.

Patients and Methods

Patient Population
Between April 2014 and December 2019, 125 

cases diagnosed with breast cancer and examined 
through preoperative breast MRI were studied 
retrospectively. The study was approved by the 
Hatay Mustafa Kemal University Clinical Re-
search Ethics Committee with the decision No. 
04, dated 05/09/2019.

After excluding 4 patients with recurrent breast 
cancer, 2 with previous breast operation for oth-
er reasons, 2 patients with non-diagnostic MRI 
examinations, and 13 patients whose pathology 
results were insufficient for molecular classifica-
tion, the remaining 104 patients were included in 
the study. 

Imaging and Pathology Data
Informed consent was obtained from the pa-

tients before the MRI scans. A 1.5-T MR (Philips 
Achieva) equipment and a dedicated 7-channel 
breast coil were used for the MRI, which was per-
formed in the prone position. T1W, T2A, fat-sup-
pressed T2W, dynamic and subtracted (subtrac-
tive) dynamic series, DWI were obtained. For T1 A 
sequences, TR/TE=350-550/8 ms, slice thickness 
was 3 mm. For T2 A, TR/TE=2500-5000/120 ms, 
section thickness=3 mm. The 3D FFE THRIVE se-
quence was used to generate dynamic images, with 
6 repetitions at 60-second intervals yielding a total 
of 7 images, one of which was without contrast. Af-
ter the gadolinium-containing contrast agent was 
administered as IV at a dose of 0.1 mmol/kg with 
an automatic injector, 20 ml of saline infusion was 
made. Images that change dynamically pre-con-
trast images on a pixel basis were subtracted from 
post-contrast images using the subtraction tool 
which is a standard part of the Philips MR console, 
and subtracted series were obtained, which aids in 
ascertaining the contrasting profile. DWI, on the 
other hand, was obtained by applying the fat sup-
pression technique with TR/TE=1000/84 ms, sec-
tion thickness=3 mm. Two different b values, b=0 
and b=750 mm2/sec, were used for each section.

ADC map images are produced by automatically 
measuring ADC values on the MR device’s console.

Molecular subtyping was done based on the St. 
Gallen classification18.

Accordingly, patients were divided into 4 main 
subtypes according to their ER, PR, HER-2 sta-
tus, and ki-67 proliferation index (Table I). Sub-
types’ histological characteristics were recorded. 

Evaluation of Images
The MR images of the patients were reviewed 

at the workstation by two radiologists, one of 
whom was experienced, without knowing to 
which molecular subtype they belonged.

The cases were classified as masses or non-
mass enhancements according to the 5th Edition 
BI-RADS Atlas. Morphological (smooth, irregu-

Table I. Breast Cancer Molecular Subtypes.

Molecular Subtype ER and PR HER-2 Ki-67
Luminal-A ER + and/or PR+ HER-2 - <%14
Luminal-B ER + and/or PR+/- HER-2 - ≥%14

ER + and/or PR+/- HER-2 + Any
Her-2 (+) ER -, PR - HER-2 + Any
Triple (-) ER -, PR - HER-2 - Any
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lar, spiculated) and enhancement features of the 
masses (homogeneous, heterogeneous, circular, 
and non-contracting septa), distribution of non-
mass enhancements (focal, linear, segmental, 
regional, multiple regional, diffuse), and internal 
contrasting patterns (homogeneous, heteroge-
neous, consecutive nodular, agglomerated annu-
larly) were evaluated. 

Background enhancement, multifocality/multi-
centricity status, axillary LAP, DAG and kinetic 
features were evaluated in all cases.

The visual qualitative evaluation of the initial 
contrast sections classified background parenchy-
mal enhancement as minimum, mild, moderate, 
or significant19. 

Multiple lesions in the same quadrant were 
classified multifocal, while multiple lesions in 

different quadrants or a single lesion greater tha 5 
cm were considered multicentric20. Pathology re-
sults following biopsy or surgery indicated focal, 
multifocal, multicentric, and contralateral breast 
involvement.

Axillary lymphadenopathy was characterized 
as lymph nodes with suspicious morphological 
features in MRI, such as cortical thickening, 
rounded form, and increased size, and whose 
pathologic quality was confirmed by Tru-cut bi-
opsy and/or surgical operation. 

The average of the ADC measurements per-
formed using 3 ROIs (regions of interest) from 
each lesion in mm2/sec was taken while studying 
the diffusion properties of the lesions. Cystic and 
necrotic components were avoided when choos-
ing ROI.

Table II. Distribution of BI-RADS traits by molecular subtype.

Molecular Subtype

Luminal-A
N (%)

Luminal-B
N (%)

HER-2 (+)
N (%)

Triple (-)
N (%)

p

Total 27 53 10 14

Mass or Non-Mass Enhancement

0.007*Mass 17 (63) 43 (80.1) 3 (30) 11 (78.6)
NME 10 (37) 10 (19.9) 7 (70) 3 (21.4)
Background Parenchyma Enhancement

0.481

Minimal 2 (7.4) 5 (9.4) 1 (10) 2 (14.3)
Mild 7 (25.9) 18 (34.0) 2 (20) 4 (28.6)
Medium 12 (44.4) 19 (35.8) 4 (40) 4 (28.6)
Marked 6 (22.2) 11 (20.8) 3 (30) 4 (28.6)
Mass Shape

<0.001*Round 1 (5.9) 3 (7) 1 (33.3) 3 (27.2)
 Oval 1 (5.9) 2 (4.7) 2 (66.7) 4 (36.4)
Irregular 15 (88.2) 38 (88.3) 0 (0) 4 (36.4)
Mass Contour

0.001*Smooth 2 (11.8) 5 (11.6) 3 (100) 6 (54.5)
Irregular 7 (41.2) 22 (51.2) 0 (0) 5 (45.5)
Spicule 8 (47) 16 (37.2) 0 (0) 0 (0)
Mass Enhancement Characteristic

0.387Homogeneous 1 (6.3) 3 (7.1) 0 (0) 1 (9.1)
Heterogeneous 15 (87.4) 35 (81) 3 (100) 6 (54.5)
 Circular	 1 (6.3) 5 (11.9) 0 (0) 4 (36.4)
Multifocal/Multicentric Involvement

0.009Yes 7 (25.9) 28 (52.8) 4 (40) 4 (28.6)
No 20 (74.1) 25 (47.2) 6 (60) 10 (71.4)

*p-value less than 0.05
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The kinetic curve was elicited by graphing the 
intensity-time curves of the lesion signals at the 
workstation. In the early phase, if the lesion signal 
intensity grew at a rate of less than 50% in the 
first 2 minutes, it was noted as slow, between 50-
100% was considered medium, and above 100% 
was considered rapid enhancement. More than 
10% increase in persistent augmentation (Type-
1 kinetic curve), more than 10% drop wash-out 
(Type-3 kinetic curve), and more than 10% rise 
or reduction in signal intensity absence was ac-
knowledged as a plateau in the late phase after the 
first two minutes (Type-2 kinetic curve)21.

Statistical Analysis
The research data gained at the conclusion of 

the study were entered into the Statistical Package 
for the Social Sciences (SPSS) version 21.0 sta-
tistical package program (IBM Corp., Armonk, 
NY, USA). Controls and analyses of the data were 
conducted as part of the same program. Frequen-
cy (%), mean-median value, standard deviation, 
maximum and minimum values were used for 
descriptive statistics in statistical analysis. Kolm-
ogorov-Smirnov and Shapiro-Wilk tests were 
run in order to confirm data’s conformity to the 
normal distribution. Since data were not compat-
ible with the normal distribution, non-parametric 
tests were used in the analysis. The Kruskal-Wal-
lis’ test and the Chi-square test were employed in 
comparing the data. In statistical analysis, p-val-
ues lower than 0.05 were considered significant.

Results 

The mean age of 104 patients included in our 
study was 49.07±9.51 (min=26, max=71). Accord-
ing to their molecular subtypes, 26.0% of the pa-
tients were Luminal-A, 50.9% were Luminal-B, 
9.6% were HER-2 (+), 13.5% were Triple (-). 

Histopathologically, 89 (85.6%) of the patients 
had invasive ductal carcinoma, 12 (11.5%) had in-
vasive lobular carcinoma, and 3 (2.9%) had medul-
lary carcinoma. 18 Luminal-A, 50 Luminal-B, 12 
triple (-), 9 HER-2 (+), invasive lobular carcinomas 
9 Luminal-A, 3 Luminal-B, 2 of the medullary car-
cinomas were triple (-), 1 was HER-2 (+).

There were 74 (71.2%) masses and 30 (28.8%) 
non-mass enhancing lesions among the lesions. 
There was a significant correlation between mo-
lecular subtypes and mass vs. non-mass enhance-
ment, with HER-2 (+) having the highest non-mass 
enhancement rate (70%, p=0.007) (Figure 1). 	  

There was a statistically significant connection 
between mass shape and contour features and 
molecular subtypes (p<0.001, p=0.001). Luminal 
types were usually irregular in shape and had ir-
regular/spiculated contours (Figure 2), whereas 
Triple (-) and HER-2 (+) molecular subtypes were 
mostly oval/round in shape and had smooth con-
tours (Figure 3). There was no significant link 
(p=0.387) between the opposing characteristics 
and molecular subtypes.

The most prevalent distribution and internal 
enhancement patterns of non-mass enhancements 

Figure 1. A 49-year-old female patient with HER-2 
(+) invasive ductal carcinoma, non-mass enhancement, 
and segmental distribution on dynamic series. 
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were segmental distribution (31%), and heteroge-
neous enhancement patterns (60%). However, due 
to the small number of patients, the connection 
between genetic subtypes and distribution-inter-
nal enhancement patterns could not be statistical-
ly examined. 

Although no statistically significant correlation 
was found between molecular subtypes and back-
ground parenchymal enhancements (p=0.074), 
Triple (-) and HER-2 (+) tumors had a higher rate 
(28.6% and 30%, respectively) and significant 
background parenchymal enhancement compared 
to Luminal types.

In 42.3%, there was multifocal and/or multi-
centric involvement. Luminal-B and HER-2 (+) 
were the most common MFMS subtypes, despite 
the fact that the relationship between MFMS and 
subtypes was not statistically significant (p=0.09). 
Therefore, it could not be statistically analyzed.

The relationship between axillary LAP and 
molecular subtypes was discovered to be statisti-
cally significant (p=0.033). Axillary LAP accom-
paniment was found to be highest in the Triple (-) 
(64.3%) subtype. 

There was no correlation between ADC values, 
early-late phase kinetic parameters, and molecu-
lar subtypes (p=0.105; 0.105; 0.075, respectively).

Discussion

On MRI, breast cancer might be encountered 
as a mass or as a non-mass enhancement. Breast 
cancer was generally observed in the form of mass 
enhancement in our investigation, which delved 

into the MR imaging features of molecular sub-
types of breast cancer. In parallel with this find-
ing, in a study conducted by Grimm et al22, 80.9 
% of breast tumors were similarly noted as mass 
enhancement and 19.12% non-mass enhancement. 
Another study by Vilar et al23 revealed that 67.8 
% were mass augmentation and 32.2% non-mass 
enhancement. In accordance with these results, in 
our study, 74 (71.2%) of the cases were observed 
as masses and 30 (28%) as a non-mass enhance-
ment. Many studies have identified HER-2(+) as 
the molecular subtype most commonly associated 
with non-mass enhancement3,23-35. This is due to 
the fact that HER-2 (+) tumors have a higher in-
traductal component than other subtypes3. Like-
wise, a favorable correlation was discovered in 
our research between the HER-2 (+) subtype and 
non-mass augmentation.

Many studies have found that Luminal types 
typically have irregular shapes and irregular/spic-
ulated contours, whereas Triple (-) and HER-2 (+) 
subtypes have oval/round shapes and they have 
been described as having smooth outlines23,24,26-29. 
Similarly, in our study, HER-2 and Triple (-) tu-
mors were mostly smooth, while Luminal types 
had irregular shape and contour. 

The irregular shape and irregular/spiculated 
contour being more common in Luminal types 
with a better prognosis are accounted for with 
the desmoplastic reaction caused by less aggres-
sive, slower growing, lower-stage tumors in the 
surrounding tissue in order to limit the tumor’s 
growth30. The smooth shape and contour proper-
ty observed in other subtypes are elucidated by 
the fact that these tumors do not have the time for 

Figure 2. Mass lesion with an irregular shape, spiculated contour on T1W images in a 58-year-old female patient with Lumi-
nal–A subtype invasive lobular carcinoma.
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Many studies have shown a correlation be-
tween hormone receptor-negative subtypes ma-
lignancies with poor prognosis and substantial 
background parenchymal enhancement40,44,45. 
Although there was no statistically significant 
correlation between molecular subtypes and 
background parenchymal enhancement, hormone 
receptor-negative tumors showed higher back-
ground parenchymal enhancement than luminal 
types in our investigation.

There are numerous studies28,46-48 in the litera-
ture that show a correlation between multifocali-
ty/multicentricity and the Luminal-B and HER-2 
(+) subtypes.

Although not statistically significant, the sub-
types with the highest rates of multifocality/mul-
ticentricity in our analysis were Luminal-B and 
HER-2 (+).

In studies23,28,46,49,50 investigating the relation-
ship between molecular subtypes and axillary 
lymphadenopathy, the highest rates of axillary 
lymphadenopathy positivity were observed in 
Luminal-B and HER-2 (+) types; however, in a 
study comparing Luminal-A and B tumors, it was 
observed in the Luminal-B subtype compared to 
A51. In our study, the most common subtype ac-
companied by an axillary lymph node was Triple 
(-) followed by Luminal-B.

It was observed52-58 that hormone receptor-neg-
ative tumors tended to have higher ADC values 
than positive ones due to increased perfusion 
secondary to increased angiogenesis, there are 
significant overlaps between subtypes with stud-
ies reporting that HER-2 cancers had the high-

infiltration because of their rapid growth pattern, 
and that the borders are expanded not by infiltra-
tive but by pushing movement31.

Many studies32-35 on non-mass enhancements 
have shown that the most worrisome distribution 
pattern for malignancy is segmental, which has 
been explained by micro invasion of carcinoma 
and intraductal dissemination. The most com-
mon non-mass enhancement distribution pattern 
in our analysis was segmental. When the internal 
enhancement patterns of non-mass enhancements 
have been investigated, numerous studies33,34,36-38 
have concluded that clustered annular and se-
quential nodular enhancements are the most 
worrisome in terms of malignancy. The invaded 
duct and preserved periductal space are shown in 
clustered annular enhancement, whereas sequen-
tial nodular enhancement indicates several ductal 
structures squashed by fibrous stroma34. The most 
common internal enhancement pattern observed 
in our study was heterogeneous.

High background parenchymal contrast in 
breast MRI is thought to be a risk factor for the 
development of breast cancer, as well as a poor 
prognosis predictor. It has been reported that en-
hanced angiogenesis is associated with higher 
background parenchymal enhancement and micro-
vascular density, both of which have a role in the 
pathophysiology of carcinogenesis39,40. In instances 
with substantial baseline parenchymal enhance-
ment, unfavorable prognostic characteristics such 
as delayed diagnosis, aggressive progression, high 
recurrence rate, and poor response to neoadjuvant 
treatment have been documented40-44.

Figure 3. 42-year-old female patient with Triple (-) medullary carcinoma. On dynamic series a round-shaped and well-con-
toured mass lesion with annular enhancement.
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est ADC, HER-2-free Luminal-B group had the 
lowest ADC values. There was no significant 
relationship between ADC values and molecular 
subtypes in our study. 

In kinetic analysis, it has been reported that 
molecular subtypes generally exhibit a heteroge-
neous kinetic pattern, with studies in the litera-
ture indicating that Luminal A and triple-negative 
tumors exhibit less washout, whereas HER 2 pos-
itive tumors exhibit rapid or late washout in the 
early phase13,14. A heterogeneous kinetic model 
was also observed in our study. 

Our study has certain limitations. The retro-
spective nature of the study, the low proportion of 
patients falling into subtypes due to the small num-
ber of patients, and the absence of use of alternative 
imaging modalities are all reasons for this.

Conclusions

The studies on breast cancer molecular sub-
types are opening a new perspective on breast 
cancer treatment. So, magnetic resonance could 
have an increasing role to obtain a fast diagnosis. 
We need further clinical trials on this issue.
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