
Abstract. – OBJECTIVE: Glioblastoma (GBM)
is the most malignant brain tumor with rapid re-
lapse. The goal of this study is to identify mi-
croRNAs (miRNAs) involved in recurrent GBM.

MATERIALS AND METHODS: miRNA tran-
scription profile data (GSE32466) were down-
loaded, including 12 primary GBM samples and
12 recurrent GBM samples. Then, limma package
was utilized to identify differentially expressed
miRNAs (DEMs) with the criteria of false discov-
ery rate < 0.05 and |log2 fold change| ≥≥ 1. There-
after, miTarget and TargetScan databases were
used to predict the potential target genes of
DEMs. Regulatory co-expression network was
constructed based on co-expressed genes and
potential miRNA-gene pairs, and then, pathway
analysis was conducted. Furthermore, database
miRWalk was used to screen out known GBM-
associated miRNAs from the identified DEMs. 

RESULTS: A total of 71 DEMs were identified
between primary and recurrent GBM samples,
and 2684 potential target genes were found. Be-
sides, regulatory co-expression network was
constructed, including 12 DEMs and 81 poten-
tial target genes. These genes significantly en-
riched in ECM-receptor interaction, ribosome,
and focal adhesion pathways, and DEMs like
hsa-miR-320a, hsa-miR-139-5p, has-miR-128,
hsa-miR-140-5p, and hsa-miR-146b-5p had high
degree. Notably, 7 DEMs in network were known
GBM-associated miRNAs recorded in database
miRWalk. 

CONCLUSIONS: DEMs like hsa-miR-320a,
hsa-miR-139-5p, has-miR-128, hsa-miR-146b-5p,
hsa-let-7c, hsa-miR-128, and hsa-let-7a might
participate in recurrent GBM. These results
would pave ways for further study of recurrent
GBM mechanism, and for the prevention and
treatment of recurrent GBM. However, more ex-
perimental verifications are required to prove
these predictions. 
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Introduction

Glioblastoma (GBM), also known as Grade IV
astrocytoma, is the most deadly malignant type
of brain tumor that arises from glial cells or their
precursors. GBM affects 2-3 of 100,000 persons
per year, and it accounts for 12-15% of all brain
tumors and approximately 70% of all diagnosed
gliomas1. GBM usually recurs independently of
the types of treatment like surgical resection fol-
lowed by radiation or chemotherapy2. At the time
of GBM recurrence, few treatment options are
available, leading to a median survival of approx-
imately 6 months3,4. Recently, bevacizumab,
which is a monoclonal antibody against vascular
endothelial growth factor (VEGF), has been re-
ported to possess clinically meaningful activity
for recurrent GBM5. Although many efforts have
been made, no improvement is observed in the
overall survival rate of recurrent GBM. Hence,
novel target molecules are needed for the treat-
ment of recurrent GBM.

In recent years, several molecular biomarkers
for primary GBM have been identified, including
1p/19q co-deletion, hypermethylation of the
methyl guanine methyl transferase (MGMT) pro-
moter, gene mutations in important genes (isoci-
trate dehydrogenase 1 (IDH1), epidermal growth
factor receptor (EGFR), and p53), and dysregula-
tion of microRNAs (miRNAs)6,7. However, the
molecular mechanism associated with GBM re-
currence remains still elusive. Martinez et al8

have illustrated that the genetic profiles of type 1
GBM and type 2 GBM are conserved at the time
of relapse, and PTEN mutations and loss of het-
erozygosity were detected upon relapse in type 2
GBM. Besides, hypermethylation of CASP8 is a
frequent feature of relapsed GBM in comparison
with the corresponding primary tumor9. Notably,
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ma package14 in R language was employed to
identify DEMs between PGBM samples and
RGBM samples. The p-value was then adjusted
by using Benjamini-Hochberg method15, generat-
ing false discovery rate (FDR). We defined FDR
< 0.05 and |log2 fold change (FC)| ≥ 1 as the
threshold for this analysis. 

Hierarchical Clustering Analysis of DEMs
In order to show the sample-specificity of

DEMs, hierarchical clustering16 was conducted
and Euclidean distance17 was calculated by utiliz-
ing Pheatmap package18 in R language.

Target gene prediction of DEMs
Identification of gene targets is critical for

characterizing the functions of miRNAs. Report-
edly, miTarget is a reliable tool for predicting tar-
get genes of miRNA based on support vector ma-
chine classifier19. Based on thermodynamics-
based modeling of RNA duplex and comparative
sequence analysis, TargetScan can predict miR-
NA target genes conserved across multiple
genomes20. In this study, miTarget19 and Tar-
getScan20 databases were used to predict the tar-
get genes of DEMs. To make our predicted target
genes more convinced, only the common target
genes were selected, which were defined as po-
tential target genes.

Construction of the Regulatory 
co-expression Network

An essential prerequisite for understanding
cellular functions at molecular level is to correct-
ly uncover all functional interactions among vari-
ous proteins. As functional interactions generally
require co-appearance of proteins, co-expression
analysis is useful for identifying novel genes/pro-
teins in biological functions. The Search Tool for
the Retrieval of Interacting Genes (STRING)21 is
an online tool that includes plenty of co-expres-
sion relationships validated by experiments. In
this study, potential target genes with co-expres-
sion coefficients higher than 0.6 were extracted
from STRING. Thereafter, Cytoscape software22

was used to visualize the regulatory co-expres-
sion network by using these co-expression rela-
tionships and potential miRNA-target pairs. 

Pathway Analysis of Regulatory 
co-expression Network

Kyoto encyclopedia of genes and genomes
Orthology-based Annotation System
(KOBAS)23 can provide the most comprehen-

cancer stem cells (CSCs) have been suggested as
the reason of tumor recurrence, as CSCs can
stimulate tumor angiogenesis by expressing ele-
vated levels of VEGF and CSCs possess aggres-
sive and invasive properties10. As a family of
small non-coding RNAs, miRNAs play vital reg-
ulatory roles in diseases via regulating expression
of protein-coding target genes at both post-tran-
scriptional and translational levels. However, few
studies have been conducted to investigate the
miRNAs in recurrent GBM. 

In order to further study recurrent GBM mech-
anism in miRNA aspect and, thus, find novel
therapeutic targets, we firstly downloaded miR-
NA expression profiles of primary and recurrent
GBM samples and, then, analyzed these data to
identify the differentially expressed miRNAs
(DEMs) between primary and recurrent GBM
samples. Subsequently, target genes of DEMs
were identified, and the co-expression relation-
ships among target genes were analyzed, forming
regulatory co-expression network. Furthermore,
convinced miRNAs were identified by compar-
ing DEMs with previous studies. This study iden-
tified potential miRNAs and the corresponding
potential target genes involved in recurrent
GBM, providing new directions for the mecha-
nism studies on GBM, as well as prevention and
treatment of recurrent GBM. 

Materials and Methods

miRNA Expression Profiles
The miRNA expression profiles of primary

GBM (PGBM) samples and recurrent GBM
(RGBM) samples were obtained from Gene Ex-
pression Omnibus (GEO) database11. The access
number is GSE32466 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE32466), and
the dataset has a total of 24 samples, including
12 PGBM samples and 12 RGBM samples. The
platform used here was GPL10850Agilent-
021827 Human miRNA Microarray (V3) (miR-
Base release 12.0 miRNA ID version).

Identification of DEMs
The probe-level data were first converted into

expression values. For each sample, the expres-
sion values of all probes for a given gene were
averaged to obtain a single expression value.
Then, we imputed missing data and performed
quartile data normalization using robust multi-
chip average (RMA) method12,13. Finally, the lim-
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71 DEMs were identified (FDR < 0.05 and |log2

FC| ≥ 1), including 44 up-regulated DEMs and
27 down-regulated DEMs. Thereafter, hierarchi-
cal clustering analysis illustrated that DEMs
could distinguish PGBM and RGBM samples ap-
parently (Figure 2).

Target Prediction of DEMs and 
Construction of Regulatory 
co-expression Network

Database miTarget and TargetScan were used
to predict the target genes of DEMs, and the
common set of these genes were selected, gener-
ating 2684 potential target genes (Figure 3).
Then, a total of 103 validated co-expressed gene
pairs were identified based on STRING. After
combining these gene pairs with potential miR-
NA-target pairs, regulatory co-expression net-
work was constructed, which was visualized via
Cytoscape (Figure 4). This network contained 93
nodes including 12 DEMs and 81 potential target
genes (Table I). Several DEMs had high degrees,
like has-miR-320a, hsa-miR-139-5p, has-miR-
128, hsa-miR-140-5p, and has-miR-146b-5p
(Figure 4). 

miRNAs in recurrent glioblastoma
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sive set of functionalities and find statistically
enriched pathways. Here, KOBAS was used to
identify the pathways that involve potential tar-
get genes in network with a criterion of p-value
< 0.05. 

Comparison with Previous Studies
Reportedly, miRWalk24 is a comprehensive

database that provides information on miRNAs
of human, mouse, and rat. Furthermore, it also
provides information on experimentally validat-
ed miRNA interaction, associated genes, path-
ways, disease, cell lines, organs, and literatures.
In the present study, we used the Validated Tar-
gets module of miRWalk to compare miRNAs
identified here with the previously identified
GBM-associated miRNAs. 

Results

Identification of DEMs and Hierarchical
Clustering Analysis

After preprocessing, standard miRNA expres-
sion profiles were obtained (Figure 1). A total of

Figure 1. microRNA expression profiles of primary and recurrent glioblastoma. A, Expression profiles before normalization.
B, Expression profiles after normalization. White columns represent primary glioblastoma samples. Grey columns represent re-
current glioblastoma samples.



Pathway Analysis of Regulatory 
co-expression Network

KOBAS was used to perform pathway analy-
sis, and 3 pathways were identified to involve the
potential target genes in regulatory co-expression
network (Table II). Notably, ECM-receptor inter-
action was the most significant pathway, and it
involved three genes COL4A1, COL3A1 and
COL1A2 targeted by has-let-7a, has-miR-128
and has-let-7c, respectively. 
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Comparison with Previous Studies
A total of 75 miRNAs directly related with

GBM were extracted from miRWalk database.
After comparing these miRNAs with DEMs in
the regulatory co-expression network, 7 DEMs
were known GBM-related miRNAs validated in
previous studies, including hsa-let-7a, hsa-let-7c,
hsa-miR-128, hsa-miR-140-5p, hsa-miR-153,
hsa-miR-219-5p, and hsa-miR-486-5p (Table I). 

Discussion

GBM is an extremely infiltrative tumor of
which 95% recur within 2 cm of primary tumor1.
Treatment of recurrent GBM is still unsolved. In
this study, bioinformatics analyses were per-
formed to investigate the potential molecular
mechanism of recurrent GBM and identify mole-
cular targets at the aspect of miRNA. 

Regulatory co-expression network was con-
structed, and it involved 12 DEMs, including
hsa-miR-320a, hsa-miR-139-5p, has-miR-128,
hsa-miR-140-5p, and hsa-miR-146b-5p with
high degree. Among these DEMs, has-miR-128
and hsa-miR-140-5p have been validated to par-
ticipate in GBM, while hsa-miR-320a, hsa-miR-
139-5p, and hsa-miR-146b-5p have not. Report-
edly, miR-320a is dysregulated in GBM patients,

Figure 2. Hierarchical Clustering analysis of differentially expressed microRNAs. Red represents high expression value,
while blue represents low expression value. GBM: glioblastoma; rGBM: recurrent glioblastoma. 

Figure 3. Target genes predicted based on miTarget data-
base and TargetScan database.
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lustrated that miR-320a can predict the recur-
rence of colorectal cancer, and it participates in
biological functions like cell growth and survival,
tumour-stromal cross-talk, and angiogenesis.

and miR-320a overexpression can inhibit cell
proliferation, migration, invasion, and tumorigen-
esis by targeting insulin-like growth factor-1 re-
ceptor (IGF-1R)25. Notably, Lim et al26 have il-

miRNA Degree miRNA Degree

has-miR-320a 23 hsa-miR-486-5p 8
hsa-miR-139-5p 14 hsa-miR-153 5
has-miR-128 12 hsa-miR-219-5p 4
hsa-miR-140-5p 12 hsa-miR-338-3p 3
has-miR-146b-5p 11 hsa-miR-142-3p 3
has-let-7c 9 hsa-let-7a 2

Table I. Differentially expressed miRNAs in regulatory co-expression network.

miRNAs in bold represent the glioblastoma-related miRNAs validated in previous studies. miRNAs: microRNAs. 

Figure 4. Regulatory co-expression network of DEMs and potential target genes. Squares represent down-regulated DEMs.
Triangles represent up-regulated DEMs. Circles represent potential target genes. DEMs: differentially expressed microRNAs
between primary and recurrent glioblastoma samples. 
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Therefore, miR-320a might play a role in recur-
rent GBM. Moreover, Wong et al27 have found
that down-regulation of miR-139 can increase the
invasive abilities of hepatocellular carcinoma
(HCC) cells in vitro and HCC metastasis in vivo.
Actually, miR-139-5p is significantly correlated
with matrix metalloproteinase-9 (MMP-9) ex-
pression, which can promote the invasion of
glioma cells28. In this study, miR-139-5p was
down-regulated in RGBM samples compared
with PGBM samples, indicating that its down-
regulation might promote GMB recurrence. Fur-
thermore, miR-146b-5p is located within 10q24-
26, a chromosomal region most frequently miss-
ing in GBM29. Our result showed that miR-146b-
5p is down-regulated in RGBM samples com-
pared with PGBM samples. Lin et al30 has found
that overexpression of miR-146b-5p could signif-
icantly reduce the migration and invasion of pan-
creatic cancer stem cells and, therefore, induce
cancer recurrence. Katakowski et al31 have illus-
trated that miR-146b-5p suppresses EGFR trans-
lation by binding to its 3’-untranslated region,
and EGFR is essential for CSCs maintenance32.
Therefore, miR-146b-5p down-regulation pro-
motes the maintenance of CSCs, revealing that
miR-146b-5p down-regulation may induce GBM
recurrence. Altogether, miR-128, 140-5p, miR-
320a, miR-139-5p, and miR-146b-5p might par-
ticipate in recurrent GBM. 

Pathway analysis showed that target genes in
network significantly enriched in ECM-receptor
interaction and focal adhesion pathways, and the
related genes were targeted by hsa-let-7c, hsa-
miR-128 and hsa-let-7a. Tumor dormancy refers
to that cancers may recur either locally or dis-
tantly (metastasis) many years after apparently
successful primary treatment33. Extracellular ma-
trix (ECM) may play an important role in regu-
lating maintenance of dormancy and release from
dormancy, and focal adhesions physically con-
nect extracellular matrix (ECM) to cytoskeleton
and mediate cell migration34,35. Our results
showed that miR-128 is down-regulated in

RGBM samples compared with PGBM samples.
Reportedly, miR-128 is significantly correlated
with matrix metallopeptidase-9 (MMP-9) expres-
sion in GBM28. MMP-9 belongs to the zinc-met-
alloproteinase family involved in the degradation
of ECM, and MMP-9 is an important oncogene
that improves invasiveness of cancer cell which
is essential for metastasis and recurrence36. Addi-
tionally, miR-128 is downregulated in GBM and
lower grade gliomas, and its expression can sig-
nificantly reduce glioma cell proliferation and
glioma xenograft growth37. Especially, miR-128
can inhibit brain cell proliferation by targeting
E2F3α38, and block glioma self-renewal by tar-
geting oncogene BMI-137. Therefore, miR-128
down-regulation might promote cancer invasion
and GBM recurrence. In addition, our results
showed that let-7c is down-regulated in RGBM
samples compared with PGBM samples. Han et
al39 has suggested that let-7c is a metastasis sup-
pressor in colorectal cancer, as let-7c down-regu-
lation promotes the expression of K-RAS,
MMP11 and PBX3 and, thus, promotes cell mi-
gration and invasion. Therefore, let-7c down-reg-
ulation might participate in GBM recurrence via
promoting cancer cell migration and invasion. In
addition, increased let-7a expression contributes
to increased cell proliferation and ECM deposi-
tion40,41. Therefore, hsa-miR-128, hsa-let-7c, and
hsa-let-7a might regulate the recurrence of GBM.

Conclusions

hsa-miR-320a, hsa-miR-139-5p, hsa-miR-
146b-5p might play roles in recurrent GBM,
while hsa-let-7c, hsa-miR-128, and hsa-let-7a
might regulate GBM recurrence through ECM-
receptor interaction and focal adhesion. Although
more experimental verifications are still needed
to prove these predictions, our results might di-
rect further study of recurrent GBM mechanism
and the prevention and treatment of recurrent
GBM. 

L.-J. Bo, B. Wei, Z.-H. Li , Z.-F. Wang, Z. Gao, Z. Miao

ID Pathway p-value Potential target genes

hsa04512 ECM-receptor interaction 0.00679 COL4A1, COL3A1, COL1A2
hsa03010 Ribosome 0.01216 MRPL13, RPL22, UBA52
hsa04510 Focal adhesion 0.02122 COL4A1, COL3A1, COL1A2, PPP1CC

Table II. KEGG pathway analysis of potential target genes in regulatory co-expression network. 

KEGG: Kyoto encyclopedia of genes and genomes; ID: identifier; ECM: extracellular matrix. 
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