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cells (CSCs) driving tumor initiation, progres-
sion, metastasis and response to the clinical treat-
ments2,3. The CSC hypothesis has provided signi-
ficant implications for better understanding of the 
biology of cancer cells and helping in great extent 
in the development of new cures for cancer.

MicroRNAs (miRNA) are evolutionally con-
served, small non-coding RNAs that are about 
19-22 nucleotides (nt) long4. MiRNAs modulate 
gene expression by repressing their targets’ tran-
slation or inducing mRNA degradation through 
binding to the complementary sequence in target 
messenger RNA. Although tiny, miRNAs have 
been shown to play important roles in regula-
ting developmental, physiological and oncogenic 
processes. So far, there are 1921 potential ma-
ture miRNAs that have been reported in human 
(miRbase, v18, www.mirbase.org), and they are 
thought to be involved in the regulation of more 
than 60% genes coding for the human protein. 

miRNA and Stem Cells
The discovery of the first miRNA was in 

association with stem cell (SC) development in 
Caenorhabditis elegans. This miRNA was re-
quired for the transition from the L1 to L2 sta-
ge5. Let-7-associated family members (miR-48, 
miR-84 and miR-241) were later shown to be 
involved in the transition from L2 to L3, further 
implicating miRNAs in the maintenance and 
progression of SCs. Let-7 itself is involved in the 
transition from L4 to adult phenotypes6,7. In the 
absence of lin-4 and members of the let-7 family, 
the SC lineage fails to differentiate and continues 
a proliferative cycle. The fact that lin-4 and let-7 
are conserved over a number of species suggested 
that their developmental regulatory functions mi-
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Introduction 

Prostate cancer is one of the most common 
cancers among men and is the second leading 
cause of death following lung cancer1. Despite 
the extensive studies on prostate cancer, there are 
still many uncertainties/questions about the ori-
gin of the prostate cancer, molecular mechanisms 
driving the cancer cells, tumor recurrence me-
chanisms and metastasis. The major cause of this 
spread is the failure of existing clinical therapies 
including surgical and chemical treatments such 
as androgen deprivation treatment (ADT). There 
is emerging evidence that a small population of 
cells with stem cell properties called cancer stem 
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ght also be conserved8. There are several additio-
nal examples of miRNAs being key regulators of 
cell proliferation and death9, cell differentiation10, 
skeletal and cardiac muscle development11 and 
brain and neural development12. Also, ongoing 
research is building solid evidence for the role of 
miRNAs in regulating SC division and other SC 
properties13,14.

miRNA in Cancer
The first study of miRNA in cancer discovered 

that miR-15a/16-1 is often lost in chronic lym-
phocytic leukemia (CLL)15. The advances in profi-
ling techniques such as high-throughput screening 
and miRNA microarray in the past few years have 
facilitated investigator to identify aberrant expres-
sion of miRNAs in lung cancer, breast cancer, glio-
blastomas, pancreatic tumors and prostate cancers16. 
Differential miRNA expression profiles were also 
observed between primary tumors and metastatic 
tumors. These differential expression profiles of 
miRNA are informative for the diagnosis as well as 
prognosis of cancer17. The mechanisms involved in 
the differential expression of miRNA included the 
genetic location of the miRNA at cancer-related re-
gions18, the epigenetic regulation of miRNA expres-
sion19, or the abnormalities in genes and proteins 
involved in miRNA maturation processes. MiRNA 
could be also regulated by an important oncogenes 
or tumor suppressor genes with transcription activi-
ties20 such as p53, Myc and lin-28.

miRNA as an Oncogene or Tumor 
Suppressor Gene

The aberrant expressions of miRNAs in cancer 
suggested that these miRNAs might be involved 
in a pathological process of cancer development. 
Indeed, more and more studies showed that miR-
NAs might function as either oncogene or tumor 
suppressor gene. For example, miR-21, which is 
upregulated in cancers of the breast, lung, pro-
state, colon and glioblastomas, has been shown 
to be self-sufficient in promoting cancer cell 
proliferation and could evade apoptosis by tar-
geting several tumor suppressors like PTEN and 
PDCD421. Moreover, transgenic over-expression 
of miR-21 resulted in B cell lymphoma22. Many 
other miRNAs that display oncogenic functions 
included miR-17-92 cluster, which are transacti-
vated by oncogene c-Myc. These mirRNAS have 
been reported to promote tumor growth in a lym-
phoma mouse model23. On the other hand, many 
miRNAs that are under-expressed in cancers mi-
ght exert tumor suppressor functions. For exam-

ple, loss of miR-15 and miR-16 is often found in 
CLL patients. It has been shown that miR-15/16 
cluster is often deleted in various cancers inclu-
ding CLL, prostate cancer, and pancreatic cancer. 
Moreover, this loss of miR-15/16 is negatively 
correlated with the level of antiapoptotic protein 
BCL2 and is therefore associated with evasion of 
apoptosis24. Other important tumor suppressive 
miRNAs included the let-7 family, which is wi-
dely underexpressed miRNAs in various tumors, 
and can suppress tumor development by targeting 
multiple oncogenic factors involved in tumor ini-
tiation and progression such as RAS, MYC and 
HMGA225.

miRNA in Cancer Therapeutics
It is a well-known fact now that miRNAs are 

differentially expressed in cancer compared to 
normal tissue and are involved in various aspects 
of cancer development. So, investigators are in 
the process of development of miRNA-based 
anti-cancer diagnostics and therapeutics26. Prima-
rily, miRNA expression profiles could be utilized 
as informative biomarkers in cancer diagnosis 
and prognosis. In a study in the recent past, 
miRNA scored better in comparison with tradi-
tional mRNA diagnosis in studying classification 
as well as the correlation of cancer with tissue 
origin. Also, miRNA levels in serum and other 
body fluids have been observed to be associated 
well with the metastatic status of cancer and are 
being developed as powerful biomarkers for can-
cer diagnosis27.

Researchers are working also on new te-
chniques to either replace tumor suppressive 
miRNAs or target oncogenic miRNAs so as 
to negatively regulate tumor development. The 
advantage of using miRNAs as therapeutic tar-
gets is understandable. Each miRNA has the 
ability to target multiple factors in an oncogenic 
pathway, therefore, might exert a better synergi-
stic effect as compared to the traditional thera-
peutic methods, which generally target a single 
molecule. The miRNA mimic oligonucleotides 
(oligos), which are synthetic double-stranded 
RNA oligos that mimic the mature endogenous 
miRNAs28. On the other hand, anti-sense oligos 
against miRNAs (antagomiRs) have been de-
veloped to block the oncogenic activities of the 
over-expressed miRNAs. For example, systemic 
delivery of antagomir miR-10b, which has been 
shown to promote metastasis in breast cancer, 
has successfully suppressed the metastasis of 
breast cancer cells to the lung29.
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miRNA in Development Regulation 
Lin-4 and let-7 are the first two miRNAs to 

be identified involved in the development pro-
cess. Interestingly, both of them were discove-
red during Caenorhabditis elegans (C. elegans) 
development. Lin-4 controlled the larval stage 
transition from L1 to L2, by repressing lin-14, 
a factor required for proper developmental ti-
ming30. Since then, evidence from several sy-
stems has implicated that miRNA might play an 
important role in regulating embryonic stem cell 
(ESC) and embryonic development. The global 
functions of miRNA have been evaluated by the 
consequences of Dicer and DGCR8 mutants in 
human and mouse ESCs. Specifically, complete 
blockage of miRNA maturation by deletion of 
Dicer in mouse caused embryonic lethality31. 
Both dicer deficient, as well as DGCR8-deficient 
mouse ESCs, exhibited a defect in differentia-
tion and G1 cell-cycle arrest32. In addition to the 
overall involvement of the miRNA pathway in 
ESCs, other researchers have also revealed the 
specific miRNA expressions and functions in 
ESCs. For example, a set of 32 miRNAs differen-
tially expressed in human ESCs was reported33. 
In addition, miR-290-295 cluster, miR-296, miR-
302, miR-17-92 cluster and miR-15b-16 cluster 
have been reported to be over-expressed in ESCs. 
However, reports also confirmed that these miR-
NA got decreased during differentiation and are 
absent in adult tissue, whereas miR-21 and 22 are 
found abundantly expressed in differentiated and 
adult tissue34. Of note, several regulatory circuits 
between miRNAs and the pluripotent genes re-
quired for maintaining the stemness have been 
reported, revealing an amazing network of stem 
cell regulation. For example, the core transcrip-
tion factors of stem cells pluripotency, OCT-4, 
NANOG, SOX2, TCF3, occupied the promoter 
regions of a set of miRNAs that are preferential-
ly expressed in mouse ESCs such as miR-290-
295 cluster and transcriptionally activated their 
expressions35. On the other hand, some of these 
pluripotent genes are regulated by miRNAs at the 
post-transcriptional level as well36.

miRNA in Cancer Stem Cells Regulation 
Increasing evidence suggested that miRNAs 

might also be involved in regulating CSC pro-
perties. First of all, miRNA expression signature 
specific for CSC populations has been confirmed 
in several cancers. In breast cancer, Yu et al37 
reported that let-7, as well as some of other miR-

NAs including miR-16, miR-107, miR-128 and 
miR-20b, were significantly reduced in breast 
CSC (BCSC) enriched by consecutively passa-
ging breast cancer cell line SKBR3 in mice tre-
ated with chemotherapy. Clarke’s group used the 
cell surface marker CD44 and CD24 expression 
to enrich BCSC, and identified a set of 37 miR-
NAs to be a differentially expression in CD44+/
CD24-/lo BCSC population, in which three clu-
sters, miR-200c-141, miR-200b-200a-429, and 
miR-183-96-182 were significantly downregula-
ted38. MiRNA deregulation has also been repor-
ted in glioblastoma and other brain CSCs39. In 
hepatic CSC identified by EpCAM+AFP+ profile, 
researchers also discovered a unique miRNA 
signature in which miR-181 family and several 
miR-17-92 cluster members were up-regulated in 
the CSC population40. Furthermore, miRNAs ha-
ve been shown to regulate various CSCs proper-
ties, including self-renewal and differentiation, 
tumorigenesis, metastasis and chemoresistance. 
For instance, under-expression of let-7 in BCSCs 
seems to be important for maintaining the stem 
cell properties. Thus, overexpression of let-7 with 
let-7-lentivirus inhibited proliferation, mammo-
sphere formation, tumor formation and metastasis 
in NOD/SCID mice. In contrast, antagonizing let-
7 enhanced the in vitro self-renewal of non-CSC. 
Interestingly, over-expression of miR-30, another 
miRNA that was also markedly reduced in BC-
SCs, not only inhibited their ability of self-re-
newal, but also inhibited anoikis resistance and 
increased apoptosis by directly targeting UBC9 
(ubiquitin-conjugating enzyme 9) and ITGB3 (in-
tegrin β3)41. Importantly, a complete inhibition of 
self-renewal and mammosphere formation in BC-
SC was observed when introducing both let-7 and 
miR-30 at the same time. This synergistic inhi-
bitory effect of let-7 and miR-30 on self-renewal 
indicated that multiple miRNAs distinctively and 
concertedly regulated CSC properties.

Several other miRNAs like miR-200c, miR-
128 have been reported to be under-expressed 
in BCSCs, normal mammary stem cells and in 
glioma stem cells42. miR-34, a p53 downstream 
target, has also been shown to negatively regulate 
the stem cell properties of pancreatic and gastric 
CSCs; thus, over-expression of miR-34 inhibited 
sphere formation in vitro and tumor formation in 
vivo via modulating downstream targets viz. Bcl-
2, NOTCH, and HMGA243. miRNAs such as miR-
205 and miR-200 might have been observed to be 
involved in regulation of metastasis, by affecting 
epithelial-mesenchymal transition (EMT)44. Mo-
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reover, the overexpression of miR-200 negatively 
regulated the expression of EMT-activator ZEB1 
and ZEB2. These findings established a negati-
ve feedback loop between miR-200 family and 
ZEB1/ZEB2 that regulated important biological 
processes in cancer metastasis45.

Conclusions

It is evident from above literature that dif-
ferent miRNAs are involved in the regulation 
of different aspects of tumor development. Al-
so, they showed distinct CSC properties, and 
work coordinately in order to control the tumor 
progression. However, there is a need for more 
comprehensive studies to elucidate more de-
tailed mechanistic information on the role of 
miRNAs in prostate cancer progression as well 
as metastasis. 
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