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Abstract. – OBJECTIVE: Oxidative stress 
(OS) significantly correlates with cancer pro-
gression. However, targeting OS has not been 
considered as a therapeutic strategy in skin cu-
taneous melanoma (SKCM) due to a lack of sys-
tematical studies on validated biomarkers. The 
work presented here aimed to identify hub prog-
nosis-associated OS genes in SKCM and gener-
ated an effective predictive model. 

PATIENTS AND METHODS: Gene expression 
profiles of SKCM samples and normal skin tis-
sues were obtained from the Genotype-Tissue 
Expression (GTEx) and The Cancer Genome At-
las (TCGA) databases to identify differentially 
expressed OS genes. The validation cohort was 
obtained from the Gene Expression Omnibus 
(GEO) database. 

RESULTS: Thirteen hub prognosis-associat-
ed OS genes were recognized and incorporated 
into the prognostic risk model. Our constructed 
model was significantly associated with overall 
survival of SKCM patients as well as was shown 
to be associated with cancer progression. Our 
prognostic risk model was found to improve the 
accuracy of diagnostics, as shown using both 
TCGA and GEO cohorts. Both hub gene expres-
sion and risk score were used to generated no-
mograms that displayed favorable discriminato-
ry abilities for SKCM. 

CONCLUSIONS: Overall, our study presents a 
model that may provide novel insights into the 
prognosis and survival of SKCM patients, as 
well as the development of individualized treat-
ment therapy.

Key Words:
Integrated bioinformatic analysis, Oxidative stress, 

Prognosis, Skin cutaneous melanoma.

Introduction

Skin cutaneous melanoma (SKCM) is an ag-
gressive malignant tumor that poses a serious 

threat to health1. In 2018, 287,723 new patients 
were diagnosed with melanoma around the world 
and 21.1% of these patients passed away from the 
disease2. Metastatic SKCM results in the greater 
number of deaths related to skin tumors3. Patients 
diagnosed with SKCM in stages I and II have a 
10-year overall survival rate of 75 to 98%4. How-
ever, one-third of these patients develop metastat-
ic melanoma. In contrast, for SKCM patients di-
agnosed in stages IIIA to IIID, the 10-year overall 
survival rate is decreased and ranges between 
24-88%. These data suggest that early diagnosis 
of SKCM is essential for a favorable outcome5. 
Even though some theories indicate that tumor-
igenesis and progression are related to skin pig-
mentation6,7 and that pathogenesis is associated 
with acquired melanocytic nevi, family history 
and genetic susceptibility8,9, but this pathogen-
esis behind SKCM is still not known. Accurate 
diagnosis of SKCM at early stages is the main 
objective. Some work is focusing on uncovering 
new biomarkers related to the prediction of pro-
gression and prognosis of SKCM that can also be 
used for personalized treatment10,11. However, on-
ly a few clinically relevant biomarkers and tools 
for SKCM are available12. It is thus necessary to 
uncover additional biomarkers potentially able to 
aid in the diagnosis and identifying the prognosis 
behind SKCM cases. 

Oxidative stress (OS) is the result of an imbal-
ance of oxidants and antioxidants and promotes 
increased levels of reactive oxygen species (ROS). 
ROS includes singlet oxygens, hydrogen peroxide 
and superoxide anion13. The overproduction of 
ROS is observed in patients with SKCM and 
suggests that ROS may drive cancer development 
and progression14-17. The presence of excessive 
ROS leads to DNA damage and genotoxicity18,19 
and increases the chances of mutations that can 
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lead to cancer20,21. In skin cells, ROS are gener-
ated by the NADPH oxidase family of enzymes, 
nitric oxide synthase, arachidonic acid oxygenase 
activities and mitochondria primarily in melano-
somes22. Even though melanin has protective ef-
fects on melanocytes when it comes to protecting 
cells against UV radiation, synthesis of melanin 
can also be harmful since it is associated with 
increased levels of intracellular ROS23,24.

Bioinformatics has been used to identify dis-
ease-specific biomarkers for SKCM25,26. Howev-
er, differentially expressed genes are identified 
from a single analysis method which lacks dis-
criminatory ability for highly connected genes. 
Meanwhile, sole focus on the expression levels of 
individual genes ignores intergenomic epistasis. 
Weighted gene co-expression network (WGCN) 
is used to evaluate the association between genes 
and phenotypic traits rather than focusing on 
individual gene expression27. During WGCN 
analysis (WGCNA), SKCM expression data can 
be used to identify hub biomarkers for diagno-
sis and prognosis28,29. Furthermore, differential 
gene expression analysis of transcriptional da-
ta is another powerful tool providing changes 
in quantitative expression levels between two 
subgroups30. In this study, candidate OS genes 
differentially expressed in SKCM tissues vs. nor-
mal skin were identified using WGCNA and 
differential gene expression analysis to enhance 
the discriminatory ability of highly connected 
genes. Subsequently, univariate Cox regression 
and least absolute shrinkage and selection opera-
tor (LASSO) analyses were also used to identify 
hub genes significantly related to SKCM progno-
sis. A prognostic risk model was generated based 
on hub gene expression. The significance of each 
gene was explored in SKCM patients. To date, 
most prognostic risk models for SKCM were 
mainly constructed based on tumor immunity31, 
miRNAs and lncRNA signatures32,33. However, 
these studies used simplified univariate analysis34 
and none systemically explored OS genes in SK-
CM and their prognostic value. Thus, the study 
presented here uncovers the first OS-associated 
risk model that can provide novel insight into 
diagnosis and prognosis of SKCM cases.

Patients and Methods

Patients
Both RNA-sequencing data and clinical in-

formation for the 471 SKCM and 1 normal skin 

tissue samples were obtained from the Universi-
ty of California Santa Cruz Xena (UCSC Xena; 
http://xena.ucsc.edu/)35. The Genotype-Tissue 
Expression (GTEx) database (https://gtexportal.
org/home/datasets) was used to obtain transcrip-
tome data for 812 normal skin samples36,37. In 
addition, the Gene Expression Omnibus (GEO) 
GSE65904 cohort (https://www.ncbi.nlm.nih.
gov/geo/), which contained gene expression pro-
files and clinical data for a total of 214 SKCM 
patients, was used as a validation cohort38. R 
software and specific packages were used to per-
form bioinformatic analyses. Log2-transforma-
tion and normalization using the “sva” package 
were performed to remove batch effects39,40. To 
obtain OS-associated genes, GeneCards data-
base (https://www.genecards.org) was used to 
obtain 1399 protein domains for the specific OS 
genes with a relevance score ≥ 7.

WGCN Construction and the 
Identification of the Hub Module

A gene co-expression networking using the 
“WGCNA” package41 was generated using OS 
gene expression profiles for SKCM cases in the 
TCGA. Pairwise Pearson’s correlation coeffi-
cients were determined between all the genes. 
The following formula was used to identify a 
weighted adjacency matrix: amn=|cmn|β (cmn = 
Pearson’s correlation between gene m and gene 
n; amn = adjacency between gene m and gene 
n). Next, a parameter for “β” was identified to 
choose strong gene correlations. A topological 
overlap matrix (TOM) transformed adjacencies. 
Average linkage hierarchical clustering was 
used to construct OS gene dendrograms with 
a minimum module size of 50. Dissimilarities 
of module eigengenes were calculated. Further-
more, module eigengenes and gene significance 
revealed modules relevant to SKCM clinical 
traits. Genes in the functional module were la-
beled as candidates.

Differential Expression Analysis 
and Interactions

Differential expression analysis using the 
“limma” package compared SKCM samples and 
normal skin tissues. Genes with a FDR < 0.05 
and |log2 fold change (FC)| > 1 were regarded 
as candidate DEOGs based on previous meth-
ods42 and were visualized using a volcano plot 
using the “ggplot2” package43. Furthermore, 
genes that were overlapping between candidate 
DEOGs, the WGCN and GSE65904 were con-
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sidered as “real” DEOGs and were visualized 
using a Venn diagram generated by the “Venn-
Diagram” package44.

Construction of A Prognostic Model and 
Evaluation of Its Efficacy

All DEOGs were subjected to univariate Cox 
regression analysis using the “survival” package 
with a cutoff criterion of p < 0.05. Thereafter, 
genes from this analysis were integrated into 
LASSO analysis45 to select hub OS genes and 
generate a SKCM risk model. Next, SKCM pa-
tients were categorized into high - and low-risk 
subgroups. Risk score of each sample was calcu-
lated as follows:

Risk score = Σexpgenei*βi

where expgenei represents the relative expres-
sion value of OS gene i and β represents the 
regression coefficient46. The “survival” package 
was integrated into the Kaplan-Meier method 
and log-rank test to compare outcomes between 
the two risk subgroups. The “survivalROC” and 
“timeROC” packages were used to validate pre-
dictive accuracy of the gene signature47. Univar-
iate and multivariate Cox regression analyses 
evaluated the relationship between clinical char-
acteristics and risk score, with a nomogram in-
corporating calibration plots and using the “rms” 
package was generated to determine clinical out-
comes of SKCM patients48.

Evaluation of Hub Genes
The HPA online database (http://www.protein-

atlas.org/) was used to determine protein expres-
sion differences between normal skin and SKCM 
tumor tissues49,50. These data were analyzed using 
Image-J software (National Institutes of Health, 
Bethesda, MD, USA), which quantified the per-
centage of positive staining. Gene expression lev-
els of key OS genes were confirmed using TCGA 
dataset. The prognostic value of each gene situ-
ated in the TCGA-SKCM cohort was determined 
using the Kaplan-Meier method.

GO and KEGG Enrichment Analyses
The Database for Annotation, Visualization 

and Integrated Discovery version 6.851 was used 
to determine the biological functions of hub OS 
genes. Three terms including BP, CC, and MF 
were used in GO analyses. Both p and FDR val-
ues of < 0.05 were considered to be statistically 
significant.

Statistical Analysis 
All statistical analyses were performed with 

SPSS (Statistical Product and Service Solution) 
software version 23.0 ((IBM Corp., Armonk, 
NY, USA)52. Measurement data were present-
ed as the mean ± SD (standard deviation), and 
the difference between risk score and clinical 
features were compared with Student’s t-test 
and χ2-test. Furthermore, log rank test was also 
applied for Kaplan-Meier survival analysis, and 
multivariate Cox regression analysis was used to 
determine whether our constructed risk model 
was independent of other clinical characters. 
p-values of < 0.05 were considered statistically 
significant.

Results

New Hub Modules Using WGCN
Publicly available datasets were analyzed as 

presented in Figure 1. To identify functional 
clusters in SKCM patients, WGCNA was per-
formed on 471 SKCM samples that contained 
clinical information provided by the TCGA-SK-
CM cohort related to 1399 extracted OS genes. 
The β = 12 (scale-free R2 = 0.85) was used as a 
soft-threshold for the scale-free network (Figure 
2A). Four co‑expressed modules were identified 
(Figure 2B-C) and each was assigned a different 
color to identify connections with normal or 

Figure 1. Flowchart describing the schematic overview of 
the study design.
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tumor traits. The turquoise module was posi-
tively associated with normal tissues (r = 0.99, 
p = 0; Figure 2D) and selected as the module of 
interest.

Overlapping DEOGs
Based on a false discovery rate (FDR) < 0.05 

and |logFC| > 1.0, a total of 466 OS genes were 
identified in the TCGA dataset. There were 228 
genes that were downregulated and 238 genes 
that were upregulated and identified as candi-
date DEOGs (Figure 3A). Figure 3B reveals 
the distribution of co-expression genes from 
DEOGs, the turquoise module from TCGA and 
GSE65904 gene sets. A total of 189 overlapping 
genes were used for further analyses. 

Prognosis-Associated OS Gene 
Screening and Genetic Risk Score
Model Construction for SKCM Patients

The 189 identified DEOGs were further ana-
lyzed using univariate Cox regression analysis. 
A total of 17 OS genes were identified with a p 
< 0.05 (Figure 4A). The LASSO algorithm was 
used to shrink the OS gene range (Figure 4B 
and C) and 13 hub OS genes (MMP2, STK25, 
TUFM, C4B, EGFR, CARS2, ACOX2, GLE1, 
MGST1, CALM2, UBQLN4, A2M, and FAS) 
were selected to determine the risk score. Using 
median risk scores, all SKCM patients in the 
TCGA (Figure 4D) and GSE65904 (Figure 4E) 
cohorts were divided into low- and high-risk 
groups. Coefficients of 13 hub genes are provid-
ed in Table I.

Figure 2. Identification of modules associated with the clinical information in the TCGA-SKCM dataset. A, The scale-free fit 
index for soft-thresholding powers. B, Clustering of modules eigengenes. C, A dendrogram of co-expression network modules 
was ordered by a hierarchical clustering of genes. Each module was assigned with different colors. D, A heatmap showing the 
correlation between the gene module and clinical trait (tumor and normal). The correlation coefficient in each cell represented 
the correlation between gene module and the clinical traits, which decreased in size from red to blue. 
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Figure 3. Identification of DEOGs among the TCGA and GSE65904 cohorts of SKCM. A, Volcano plot of candidate DEOGs 
in the TCGA dataset with the cut-off criteria of FDR < 0.05 and |logFC| > 1. B, The Venn diagram of genes among candidate 
DEOG, WGCN, and GSE65904 lists.

Figure 4. Construction of prognostic model in the TCGA and GSE65904 cohorts. A, Univariate Cox regression analysis for 
identifying prognosis-related OS genes in TCGA cohort. B-C, LASSO analysis for determining the number of factors and 
constructing the prognosis prediction model. D, Risk score distribution, survival status, and expression heat map of TCGA 
cohort. E, Risk score distribution, survival status, and expression heat map of GSE65904 cohort.
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Prognostic Risk Score and 
Clinical Characteristics Associations
in SKCM Patients

Overall survival of SKCM patients signifi-
cantly decreased with a higher risk score in the 
TCGA cohort (Figure 5A). Both univariate and 
multivariate Cox regression analyses revealed an 
association between risk score and SKCM prog-
nosis. These analyses also revealed that risk score 
can be an independent prognostic feature for 
SKCM patients (Figure 5C and D). Additionally, 
receiver operating characteristic (ROC) analysis 
of overall survival in SKCM patients indicated 
that our model contained a moderate predictive 
accuracy ROC curve >0.728 at 7 years in the 
TCGA database (Figure 5B), suggesting that this 
model is more accurate than other others (Fig-
ure 5I). Findings were also confirmed using the 
GSE65904 cohort (Figure 5E-H and J), demon-
strating our model was both specific and sensitive 
for the analysis of SKCM patients. 

Furthermore, patients in the age group of >60 
years of age or patients diagnosed with primary 
melanoma showed significant associations with 
higher risk scores (p < 0.05, Figure 6A and C). 
It was also uncovered that cancers with higher 
T stages showed significantly greater risk scores 
(p < 0.05, Figure 6B). This suggested that this 
risk model is linked to the progression of SKCM 
patients. Heatmaps of the TCGA and GSE65904 
cohorts were generated to reveal expression lev-
els of 13 hub OS genes (Figure 6D-E). These data 
revealed significant differences in the two groups 
in respect to metastasis, as well as TNM and T 
stages in the TCGA cohort and tumor stage in the 
GSE65904 cohort (p < 0.05). 

Prognostic Value of Selected 
Hub OS Genes

Significantly elevated expression levels were 
identified for TUFM, GLE1, UBQLN4 and A2M 
in SKCM samples. In contrast, a significant de-
crease in the expression levels of MMP2, STK25, 
C4B, EGFR, CARS2, ACOX2, MGST1, CALM2 
and FAS were observed in SKCM versus normal 
skin samples (Supplementary Figure 1). Im-
munohistochemistry data provided by the Hu-
man Protein Atlas (HPA) database were used to 
confirm protein expression levels of OS genes 
(Figure 7A-M). Next, the prognostic value of 
the selected OS genes was interrogated using 
Kaplan-Meier survival analysis. This revealed 
that overall survival of SKCM patients was neg-
atively associated with MMP2, STK25, TUFM, 
UBQLN4, EGFR, CARS2, GLE1, and MGST1 
expression levels (Figure 7A-H, p < 0.05). Prog-
nosis was positively associated with CALM2, 
A2M, FAS, ACOX2, and C4B expression levels 
(p < 0.05, Figure 7I-M). 

Functional Enrichment Analysis
Hub genes were found to be enriched in re-

sponse to OS, ROS, protein autophosphorylation 
and the stress-activated MAPK cascade using 
Gene Ontology (GO) enrichment analysis (Fig-
ure 8A). Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) enrichment analysis portrayed 
that selected hub genes were enriched in the 
GnRH, estrogen, fluid shear stress and athero-
sclerosis pathways (Figure 8B). Furthermore, 
KEGG enrichment analysis also indicated that 
the hub genes not only were significantly as-

Table I. 13 prognosis-associated OS genes with SKCM in the TCGA dataset were identified by LASSO analysis.

			                                 Univariate Cox regression analysis
						      LASSO
	 OS name	 HR	 Lower 95% CI	 Upper 95% CI	 p-value	 coefficient

MMP2	 1.07051242	 1.00185395	 1.14387615	 0.04393273	 0.0206
STK25	 1.45938553	 1.07362146	 1.9837589	 0.01579938	 0.0905
TUFM	 1.44611954	 1.16715556	 1.79175921	 0.00074206	 0.1915
C4B	 0.7135384	 0.58282892	 0.87356174	 0.00107801	 -0.1790
EGFR	 1.19578109	 1.06303628	 1.34510217	 0.00289988	 0.2453
CARS2	 1.52264663	 1.17062463	 1.9805262	 0.0017222	 0.2199
ACOX2	 0.84044443	 0.71861297	 0.98293081	 0.02959785	 -0.0972
GLE1	 1.49630354	 1.07454398	 2.08360412	 0.0170533	 0.3325
MGST1	 1.14437718	 1.05029274	 1.24688964	 0.00206324	 0.0487
CALM2	 0.69373683	 0.54970193	 0.87551227	 0.00207243	 -0.0474
UBQLN4	 1.41294664	 1.11171252	 1.79580438	 0.00471891	 0.1726
A2M	 0.86973665	 0.80156876	 0.94370176	 0.00080398	 -0.0329
FAS	 0.7627499	 0.65669253	 0.88593578	 0.00039191	 -0.1067

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-Art.-10425.pdf
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sociated with SKCM prognosis but also played 
a critical role in other cancer types including 
bladder cancer and glioma. This led us into fur-
ther exploring the role of these OS genes in other 
tumor types.

Nomogram Construction
Both risk score and clinical characteristics 

were used to construct nomogram plots pre-
dicting outcomes and overall survival of SK-
CM patients in both the TCGA and GSE65904 

Figure 5. Efficacy evaluation of constructed prognostic model. A, Survival curve of TCGA cohort. B, TimeROC curves for 
forecasting overall survival in TCGA cohort. Univariate and multivariate Cox regression analysis of the clinicopathological 
features in TCGA (C-D) and GSE65904 (G-H) cohorts. (E) Survival curve of GSE65904 cohort. (F) TimeROC curves for 
forecasting overall survival in GSE65904 cohort. ClinicalROC curves for forecasting overall survival in TCGA (I) and 
GSE65904 (J) cohort. 
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cohorts (Figure 9A and C). Our prognostic risk 
model showed that calibration plots at 3 and 5 
years demonstrated strong conformity (Figure 
9B and D). Expression levels of 13 hub genes in 
the TCGA and GSE65904 cohorts were also used 
to generate nomogram plots (Figure 10A and C). 
Predicted and observed outcomes showed strong 
conformity based on respective calibration plots 
(Figure 10B and D).

Discussion

Despite the discovery of new biomarkers for 
melanoma, there is still a need for novel mark-
ers more closely associated with early diagnosis 
and prognosis of SKCM53. In the study present-
ed here, a co-expression network of OS genes 
was generated, and differential expression anal-
ysis was applied to identify the differentially 
expressed OS genes (DEOGs). Next, univari-
ate Cox regression and LASSO analyses were 
used to identify 13 differentially expressed OS 
genes including MMP2, STK25, TUFM, C4B, 

EGFR, CARS2, ACOX2, GLE1, MGST1, CALM2, 
UBQLN4, A2M, and FAS, as hub prognosis-asso-
ciated genes. TUFM, GLE1, UBQLN4 and A2M 
were overexpressed and MMP2, STK25, C4B, 
EGFR, CARS2, ACOX2, MGST1, CALM2 and 
FAS were decreased in SKCM tissues. In addi-
tion, MMP2, STK25, TUFM, UBQLN4, EGFR, 
CARS2, GLE1, and MGST1 were found to be 
negatively associated with overall survival of 
SKCM patients. In contrast, CALM2, A2M, FAS, 
ACOX2, and C4B were positively correlated with 
patient outcomes.  Ubiquitously and abundantly 
expressed in most cells, MMP2, which encodes 
a gelatinase that primarily degenerates collagen 
type IV, is reportedly activated by OS54, ulti-
mately promoting melanoma progression55. Fur-
thermore, MMP2 overexpression is significantly 
associated with atypia progression and architec-
tural impairment56,57. In skin cancer, the EGFR 
ligand is transactivated by the overproduction of 
ROS58,59. Overexpression of MGST1 (a member of 
the antioxidant system) protects cells from ROS 
damage and leads to less metastasis in melano-
ma60. The FAS-ligand is preferentially expressed 

Figure 6. Evaluation the relationship between the risk score and clinicopathological parameters in patients with SKCM. 
Correlation analysis between the risk score and clinicopathological characters of Age (A), T stage (B), and metastatic ability 
(C) in TCGA cohort. The heatmap shows the distribution of clinicopathological features and OS genes expression in two risk 
subgroups from the TCGA (D) and GSE65904 (E) cohorts.
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in the basal layer of the epidermis and functions 
as a surveillance molecule involved in preventing 
cell transformation61 and promoting cellular ROS 
generation through NADPH oxidase activation62. 
FAS is also involved in apoptotic processes63 
and its decreased expression was significantly 
linked to a poor prognosis in cases of malignant 
melanoma64. Some of the identified hub genes in 
our study were previously significantly associat-
ed with SKCM progression. However, there are 
no studies systematically analyzing the specific 
prognostic role of OS genes in SKCM. Therefore, 
our analysis provides insight into the relationship 
between OS and SKCM progression, identifying 
valuable OS-associated biomarkers for personal-
ized treatment.

In this study, a new prognostic prediction 
model was constructed to determine wheth-
er they could be used as prognostic markers, 
generating the first OS-associated risk mod-
el for SKCM prognosis. Both univariate and 
multivariate Cox regression analyses indicate 
the reliable prognostic value for SKCM if this 
model is used. Our model also is successful in 
predicting SKCM prognosis and has shown to 
have increased accuracy compared to features 
such as age, gender, TNM stage and metastatic 
ability. In addition, we considered the role of OS 
in the stages of cancer progression and carcino-
genesis65,66 by assessing connections between 
risk score and SKCM clinical factors. Our model 
was significantly associated with metastasis, T 

Figure 7. HPA database and Kaplan-Meier analysis in TCGA cohort verified the protein expression and prognostic value of 
MMP2 (A), STK25 (B), TUFM (C), UBQLN4 (D), EGFR (E), CARS2 (F), GLE1 (G), MGST1 (H), CALM2 (I), A2M (J), 
FAS (K), ACOX2 (L), and C4B (M) in SKCM. Values are presented as means ± standard deviation (n=3), *p < 0.05 relative 
to the control group. Magnification ×200.
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stage and patient age. As one of the most widely 
used clinicopathological parameters, the Amer-
ican Joint Committee on Cancer (AJCC) stag-
ing system was also used for the prediction of 
SKCM prognosis4. However, there is increasing 
evidence supporting the notion that the AJCC 
staging model is still not suitable for the com-
prehensive elucidation of tumor behavior and is 
not accurate in diagnostics67. A similar conclu-
sion was made in this study for SKCM patients. 
Compared with TNM stage in SKCM, our risk 
model not only showed a stronger relationship 
with SKCM prognosis, but also predicted SKCM 
progression, including tumor growth and met-
astatic potential. Nomogram analysis revealed 
how credible this risk signature was in predict-
ing SKCM patient overall survival. 

Nonetheless, despite these findings, there were 
still certain limitations in this study. First, a ret-

rospective analysis was performed, and in the 
future, a prospective approach should be used to 
confirm the results presented here. Second, there 
was a lack of experiments performed to confirm 
the mechanisms we uncovered through bioin-
formatics. Therefore, in the future, experiments 
need to be performed to achieve mechanistic 
insight for the identified genes and their relation 
to the progression of SKCM. 

Conclusions

In summary, we constructed a co-expression 
network and performed bioinformatic analyses to 
identify 13 hub OS genes significantly associated 
with the overall survival of patients with SKCM. 
We also successfully constructed a prognostic 
model with powerful predictive effects. To the 

Figure 8. Functional enrichment analysis. A, GO enrichment terms of hub OS genes in biological process (BP), cellular 
component (CC), and molecular function (MF). B, KEGG enrichment terms of hub OS genes. In each bubble plot, the size of 
the dot represents the number of enriched genes.
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Figure 9. Construction of nomogram based on the risk score and other clinical factors. Nomograms for predicting SKCM 
1-, 3-, and 5-year overall survival in TCGA (A) and GSE65904 (C) cohort. B, The calibration plot of the nomogram in TCGA 
cohort. D, The calibration plot of the nomogram in GSE65904 cohort.

Figure 10. Construction of nomogram based on the expression of 13 OS genes. The nomogram (A) and calibration plot (B) of 
13 OS genes in TCGA cohort. The nomogram (C) and calibration plot (D) of 13 OS genes in GSE65904 cohort.
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best of our knowledge, this is the first OS-asso-
ciated model to predict the prognosis of SKCM 
malignancy. This work identified a new method 
for understanding the specific roles of OS in SK-
CM and highlighted the potential of OS profiling 
to elucidate clinical prognosis in SKCM patients. 
We believe that our study makes a significant 
contribution to the literature as our prognostic 
model may provide new insights into the patho-
genesis, prognosis, and individualized treatment 
in patients with SKCM.
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