## Comparison of pegylated liposomal doxorubicin and paclitaxel plus carboplatin-based chemotherapy as first line treatment for patients with ovarian cancer: a systematic review and meta-analysis of randomized controlled trials

S.-Q. SHI<sup>1</sup>, F.-F. JIANG<sup>1</sup>, T. HONG<sup>1</sup>, Y. ZHUANG<sup>1</sup>, L. CHEN<sup>1</sup>, X.-L. HUANG<sup>2</sup>

<sup>1</sup>Department of Gynecology and Obstetrics, the Fifth Affiliated Hospital of Sun Yat-sen University <sup>2</sup>Department of Respiratory Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China

Shaoquan Shi and Fangfang Jiang contributed equally to this work

Abstract. - We reviewed studies comparing survival outcomes such as overall survival (OS), progression free survival (PFS), and toxicity profile between patients treated with Pegylated Liposomal Doxorubicin (PLD) combination and those treated with paclitaxel combination for ovarian cancer. We conducted systematic searches in various databases including Medline, Cochrane Controlled Register of Trials (CENTRAL), ScienceDirect, and Google Scholar from inception until August 2019. We used the Cochrane risk of bias tool to assess the quality of published trials. We carried out a meta-analysis with random-effects model and reported pooled Hazard ratios (HR) or Risk ratios (RR) with 95% confidence intervals (CIs). In total, we analysed 7 studies including 3,676 participants. All the studies were randomized controlled trials, while majority of studies had low bias risks. We did not find significant evidence for any of these outcomes except progression free survival (favoured PLD combination therapy pooled HR=0.87; 95% CI: 0.77-0.98). Worst grade toxicities like allergy (pooled RR: 1.86; 95% CI: 1.06-3.24) and neurotoxicity (pooled RR: 5.59; 95% CI: 1.43-21.84) were significantly higher among patients receiving paclitaxel combination therapy when compared to patients receiving PLD combination therapy. To summarize, PLD combination therapy is non-inferior to paclitaxel combination therapy in the management of ovarian cancer with respect to survival outcomes and worst grade toxicity profile. However, clinical recommendations cannot be made, as the evidence is not conclusive or significant enough.

Key Words:

Carboplatin, Doxorubicin, Meta-Analysis, Ovarian Cancer, Paclitaxel.

## Introduction

Ovarian cancer is one of the leading causes of mortality among the gynaecological tumours<sup>1</sup>. GLOBOCAN 2018 has reported that about 295,000 new cases and 185,000 deaths occurred due to ovarian cancer<sup>1</sup>. More than half of these cases and deaths occur in developing regions like Asia<sup>1</sup>. It usually has an asymptomatic onset and unobtrusive progression of disease. Even if symptomatic, non-specific symptoms such as pain, abdomen swelling, weight loss, and change in bowel and bladder habits occur<sup>2</sup>. This leads to delay in diagnosis and most of the women with ovarian cancer are found in stage III or IV of disease. This makes ovarian cancer to have one of the worst prognoses (ranging from 37% to 54% in European and American region) among the gynecological tumours<sup>3,4</sup>.

The standard approach for treatment of ovarian cancer patients is dependent on the grade of disease. Women with low grade stage I cancer may not require chemotherapy while high grade cases require a combination chemotherapy<sup>2</sup>. Previous evidence and experiences have established that the platinum agents such as carboplatin and cisplatin, are as the most biologically active cytotoxic agents in the management of ovarian cancer. Out of these two, carboplatin is more preferred as it has lesser toxicity and an equivalent efficacy<sup>5</sup>. Carboplatin is commonly provided in combination with paclitaxel. However, there has been an increasing report of cumulative toxicities which includes residual neurotoxicity following first line treatment. Hence, many investigators nowadays are seeking newer therapeutic combinations in treating ovarian cancer<sup>6</sup>.

Pegylated liposomal doxorubicin (PLD), an anthracycline anticancer drug, in combination with carboplatin has been found to be efficacious in patients with platinum sensitive ovarian cancer7. Anthracyclines interacts with the deoxyribonucleic acid (DNA) and affects the functions of cell that relies on DNA. It also interacts and alters the functions of cell membranes leading to generation of hydroxyl radicals and hydrogen peroxide that are destructive to cells<sup>8</sup>. Pegylated coating of PLD forms a hydrophilic barrier protecting the liposomes from reticuloendothelial system detection and makes the drug active for a longer period of time<sup>9,10</sup>. PLD does not enter into tight capillary junctions like gastrointestinal tract and heart because of the size of liposomes<sup>11</sup>. This makes the PLD carboplatin combination to have better safety profile when compared to other non-doxorubicin combination chemotherapeutic agents like paclitaxel and carboplatin. Ironically, there have been no systematic efforts to synthesize the outcomes between these two different combination medications. This meta-analysis is therefore being planned with the aim to compare PLD plus carboplatin and paclitaxel plus carboplatin in the management of ovarian cancer patients.

## **Materials and Methods**

## Type of Studies to be Included

We included parallel arm individual randomized, quasi randomized or cluster randomized controlled trials for the current review. Studies reported as full text will be included while studies published with only abstract or unpublished data were excluded.

## Type of Participants

We included studies conducted among patients with ovarian cancer irrespective of the stage of tumour.

## Type of Intervention

We included studies that directly compared the effectiveness of PLD plus carboplatin and paclitaxel plus carboplatin for the treatment of ovarian cancer.

## Type of Outcome Measure

Following outcomes measures were seen in our review: overall survival (OS), progression free survival (PFS), disease progression rate (PD), overall response rate (ORR; complete response and partial response), disease control rate (DCR), toxicity profile (worst grade of toxicity grade  $\geq$  3: hematological conditions such as anemia, leukopenia, thrombocytopenia, neutropenia; non-hematological conditions like fatigue, allergy, nausea or vomiting, cardiac or neurological toxicities). We included the studies reporting any of the outcomes mentioned above in both arms.

## Search Strategy

We conducted extensive search in the following databases: Medline (PubMed), Google Scholar, ScienceDirect, Cochrane central register of controlled trials. In addition, search was conducted in the following clinical trial registries: ClinicalTrials.gov, and World Health Organization International Clinical Trials Registry Platform. We searched with a combination of medical subject heading (MeSH) and free text terms including "Paclitaxel plus Carboplatin", "Doxorubicin plus Carboplatin" "Ovarian Tumour", "Overall Survival", "Progression Free Survival", "Ovarian Cancer", "Pegylated Liposomal Doxorubicin" and "Randomized Controlled Trial" in all search engines for the above-mentioned databases. We retrieved all English publications from databases inception to August 2019.

## Searching Other Resources

We hand searched the list of references in primary trials which were obtained through our electronic search. We included relevant articles for our review and further analysis. We contacted the authors of the published trials in cases requiring clarification or additional information.

## **Data Collection and Analysis**

## Selection of Studies

Two independent investigators performed the literature search independently and did the screening of titles, abstracts, and keywords of the retrieved citations and assessed for the possibility of inclusion in our review. We obtained full text of the relevant studies. Further screening of abstracts and full text articles were done by the primary and secondary investigators independently and selected the studies satisfying the inclusion criteria of our review. Any disagreements between the investigators during the entire process of selection were resolved either by consensus or after consultation with another investigator. The third investigator monitored the overall quality of the review process. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) check list for reporting our review<sup>12</sup>.

#### Data extraction and management

The primary investigator extracted the required study characteristics for our review from the included studies. The information extracted included general information such as date of extraction, study title, and authors; methods such as study design, participants, and study setting; participant's characteristics such as total number of participants in each arm, baseline and endline outcome measures, and inclusion and exclusion criteria; interventions characteristics such as intervention and comparison group details and follow up duration; outcomes section such as primary, secondary outcomes, time taken for outcome assessment, and other details necessary for assessing the risk of bias of included studies.

Primary and secondary investigators performed data extraction related to outcome measures from the studies included in our review. The primary investigator transferred the obtained data into the statistical software RevMan (version 5.3 Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). The third investigator double checked data entries for correctness by comparing it to the data in the study reports.

# Risk of Bias Assessment in Included Studies

Two independent investigators assessed the risk of bias for included RCTs using the Cochrane risk of bias tool<sup>13</sup>. Following domains were assessed: random sequence generation, allocation concealment, blinding of outcome assessment and study participants, incomplete outcome data, selective reporting of outcome and other sources of bias. For each of the mentioned domains above, we graded the risk of bias as low (if adequate information was provided), as high (if the information was inadequate or not performed), or as unclear (if the information was missing).

#### Statistical Analysis

Meta-analysis was performed using the software RevMan 5.3 (Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). For time-to-event outcome data such as overall survival and progression free survival, pooled estimate can be calculated using log of hazard ratio (ln{HR}) and standard error of ln(HR)<sup>14</sup>. First, hazard ratio (HR) with 95% Confidence interval (CI) was retrieved from the trials. Logarithmic value of HR was calculated for each of the HR estimate. Standard error of ln(HR) was calculated using the following equations:

first, variance of logarithmic HR was calculated using upper and lower confidence limits of HR and cumulative distribution function of the normal distribution.

Variance 
$$(ln{HR}) = [ln(upper CI of HR)-ln (lower CI of HR)/2×1.96]$$

Standard error of logarithmic HR was calculated by taking the square root of variance of logarithmic HR.

Standard error  $(\ln{HR}) = \sqrt{Variance (\ln{HR})}$ 

Logarithmic HR and its standard error were then entered into the RevMan software 5.3 (Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) to estimate the pooled effect in terms of Hazard Ratio.

For dichotomous outcomes such as ORR, PD, DCR, and toxicity profile, we obtained the numbers of events and of participants in each group and entered those into the RevMan software 5.3 (Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) to estimate the pooled effect size in terms of Relative Risk.

We performed appropriate analyses based on the level at which the randomization was performed (either individual or clustered). We found no cluster randomized trials satisfying the eligibility criteria and did not require appropriate clustering adjustments. We used a random effects model with inverse variance<sup>15</sup>. In case of missing data, we contacted authors of the trials, and if still not able to retrieve the necessary data, we followed an imputation method.

## Assessment of Heterogeneity

We applied Chi-square tests of heterogeneity to assess between-study variance and I<sup>2</sup> statistics to quantify inconsistencies<sup>13</sup>. We classified heterogeneity according to I<sup>2</sup> as mild (I<sup>2</sup> <25%) moderate (I<sup>2</sup> between 25 and 75%) or substantial (I<sup>2</sup> >75%). Forest plot was used to graphically represent both pooled and study specific estimates. We did not perform meta-regression as the outcomes did not have the required number of studies to perform meta-regression (minimum of 10 studies).

## Assessment of Reporting Biases

We assessed reporting biases by checking whether the included trials or studies are registered in a trial registry and whether their full protocols are available. If available, we compared the list of outcomes in the protocol with the list of outcomes mentioned in the full published trial. We did not assess for publication bias as the outcomes did not have the required number of studies to assess the publication bias (minimum of 10 studies).

#### Results

#### Study Selection

We conducted a systematic search to find studies that directly compared the effectiveness of PLD plus carboplatin and paclitaxel plus carboplatin for the management of ovarian cancer from the dates of database inception until August 2019. We identified a total of 905 citations, 322 studies from Medline, 153 from CENTRAL, 299 from ScienceDirect, 112 from Google Scholar, 14 from ClinicalTrials.gov, and 5 from WHO ICTRP (Figure 1). After the first screening stage (title, abstract, and keywords), we retrieved 27 relevant studies. We reviewed their full texts for eligibility criteria. At the same, we reviewed the bibliographies of the retrieved articles and found three more relevant studies. Finally, we analysed data from 7 studies with 3,676 participants satisfying the inclusion criteria<sup>7,16-21</sup>.

#### Characteristics of the Studies Included

Table I lists the characteristics of the studies analysed. All the included studies were RCTs.



Figure 1. PRISMA flow chart showing the selection of studies for the current review (n=7).

| S. No | Author<br>and<br>year            | Country                                                                                          | Study<br>design                                     | Sample<br>size in<br>PLD<br>combination<br>arm | Sample<br>size in the<br>Paclitaxel<br>combination<br>arm | Interventions                                                                                                                                                                                                            | Follow up                                                                                                                                                                                                                                                                              | Median age of<br>the study<br>participants<br>in PLD<br>combination arm | Median age of<br>the study<br>participants<br>in Paclitaxel<br>combination arm |
|-------|----------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1.    | Bafaloukos<br>2010 <sup>16</sup> | Greece                                                                                           | Randomized<br>controlled<br>trial                   | 93                                             | 96                                                        | PLD combination:<br>Carboplatin AUC5 +<br>pegylated LD 45 mg/m <sup>2</sup> ,<br>dlq28).<br>Paclitaxel combination:<br>Six cycles of CP (carboplatin<br>AUC5 + paclitaxel 175 mg/m <sup>2</sup> ,<br>dlq21)              | Median<br>follow-up<br>43.6 months                                                                                                                                                                                                                                                     | Not given<br>(median age of total p                                     | separately<br>articipants=63 years)                                            |
| 2.    | Gladieff<br>201217               | 16 countries<br>from Europe<br>Middle East,<br>Australia,<br>North America<br>and<br>New Zealand | Multi-national<br>randomized<br>controlled<br>trial | 161                                            | 180                                                       | PLD combination:<br>Carboplatin (C)<br>AUC 5 plus PLD<br>30 mg/m <sup>2</sup> on day<br>1 every 4 weeks.<br>Paclitaxel combination:<br>C AUC 5 plus<br>paclitaxel (P)<br>175 mg/m <sup>2</sup> on day<br>1 every 3 weeks | Follow-up for<br>toxicity was<br>done prior to<br>each cycle and<br>tumour<br>assessments<br>every 3 months<br>while patients<br>were on treatment.<br>Follow-up after<br>treatment<br>discontinuation<br>every 3 months<br>for 2 years and<br>every 6 months<br>thereafter for 5 year | 60 years                                                                | 60 years                                                                       |
| 3.    | Kurtz 2011 <sup>18</sup>         | 16 countries                                                                                     | Multi-national<br>randomized<br>controlled<br>trial | 71                                             | 86                                                        | PLD combination:<br>Carboplatin (C) AUC 5<br>plus PLD 30 mg/m <sup>2</sup> on<br>day 1 every 4 weeks<br>Paclitaxel combination:<br>C AUC 5 plus paclitaxel<br>(P) 175 mg/m <sup>2</sup> on day 1<br>every 3 weeks.       | Follow-up at 3,6,9<br>and 12 months                                                                                                                                                                                                                                                    | 74 years                                                                | 73 years                                                                       |

**Table I.** Characteristics of the included studies, N = 7.

Table continued

| S. No | Author<br>and<br>year      | Country      | Study<br>design                                   | Sample<br>size in<br>PLD<br>combination<br>arm | Sample<br>size in the<br>Paclitaxel<br>combination<br>arm | Interventions                                                                                                                                                                                                                                 | Follow up                                                                                                                                                                                                                                                                           | Median age of<br>the study<br>participants<br>in PLD<br>combination arm | Median age of<br>the study<br>participants<br>in Paclitaxel<br>combination arm |
|-------|----------------------------|--------------|---------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 4.    | Mahner 2014 <sup>19</sup>  | 16 countries | Multi-national<br>randomized<br>controlled trial  | 131                                            | 128                                                       | PLD combination:<br>Carboplatin (C) AUC<br>5 plus PLD 30 mg/m <sup>2</sup><br>on day 1 every 4 weeks<br>Paclitaxel combination:<br>C AUC 5 plus paclitaxel<br>(P) 175 mg/m <sup>2</sup> on day<br>1 every 3 weeks                             | Follow-up for<br>toxicity was done<br>prior to each cycle<br>and tumour<br>assessments every<br>3 months while<br>patients were on<br>treatment.<br>Follow-up after<br>treatment<br>discontinuation<br>every 3 months for<br>2 years and every<br>6 months thereafter<br>for 5 year | 60 years                                                                | 63 years                                                                       |
| 5.    | Pignata 2011 <sup>20</sup> | Italy        | Multi-centre<br>randomized<br>controlled<br>Trial | 396                                            | 407                                                       | <b>PLD combination:</b><br>Carboplatin Area under<br>the curve (AUC) 5 plus<br>PLD 30 mg/m <sup>2</sup> ,<br><b>Paclitaxel combination:</b><br>Carboplatin AUC 5 plus<br>paclitaxel 175 mg/m <sup>2</sup><br>every 3 weeks for<br>six cycles. | Median follow-up<br>40 months                                                                                                                                                                                                                                                       | 57 years                                                                | 57 years                                                                       |

**Table I** *(Continued).* Characteristics of the included studies, N = 7.

Table continued

2916

| S. No | Author<br>and<br>year                     | Country      | Study<br>design                                  | Sample<br>size in<br>PLD<br>combination<br>arm | Sample<br>size in the<br>Paclitaxel<br>combination<br>arm | Interventions                                                                                                                                                                                                                   | Follow up                                                                                                                                                                                                                                                                           | Median age of<br>the study<br>participants<br>in PLD<br>combination arm | Median age of<br>the study<br>participants<br>in Paclitaxel<br>combination arm |
|-------|-------------------------------------------|--------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 6.    | Pujade-,<br>Lauraine<br>2010 <sup>7</sup> | 16 countries | Multi-national<br>randomized<br>controlled trial | 466<br>:                                       | 501                                                       | PLD combination<br>Carboplatin (C)<br>AUC 5 plus PLD<br>30 mg/m <sup>2</sup> on<br>day 1 every 4 weeks<br>Paclitaxel combination:<br>C AUC 5 plus paclitaxel (P)<br>175 mg/m <sup>2</sup> on day 1<br>every 3 weeks.            | Follow-up for<br>toxicity was done<br>prior to each cycle<br>and tumour<br>assessments every<br>3 months while<br>patients were<br>on treatment.<br>Follow-up after<br>treatment<br>discontinuation<br>every 3 months<br>for 2 years and<br>every 6 months<br>thereafter for 5 year | 60.5 years                                                              | 61 years                                                                       |
| 7.    | Wagner 2012 <sup>21</sup>                 | 16 countries | Multi-national<br>randomized<br>controlled trial | 467                                            | 509                                                       | PLD combination:<br>Carboplatin (C)<br>AUC 5 plus<br>PLD 30 mg/m <sup>2</sup> on<br>day 1 every 4 weeks<br><b>Paclitaxel combination:</b><br>C AUC 5 plus<br>paclitaxel (P)<br>175 mg/m <sup>2</sup> on day 1<br>every 3 weeks. | Follow-up for toxicity<br>was done prior to<br>each cycle and<br>tumour<br>assessments<br>every 3 months<br>while patients<br>were on treatment.<br>Follow-up after<br>treatment<br>discontinuation every<br>3 months for 2 years<br>and every 6 months<br>thereafter for 5 year    | 60.5 years                                                              | 61 years                                                                       |

**Table I** *(Continued).* Characteristics of the included studies, N = 7.

Except two studies (Greece and Italy)<sup>16,20</sup>, all other trials are part of multi-national centrally randomized open label RCT conducted in 16 countries across North America, Europe, Middle East, Australia, and New Zealand<sup>7,17-19,21</sup>. The mean age of study participants ranged from 57 to 74 years in the PLD combination arm, and that in the paclitaxel combination arm ranged from 57 to 73 years. Of the 3,676 participants 1,775 completed the PLD arm and 1,901 the paclitaxel arm. The sample sizes in the studies (both arms together) varied from 157 to 975, while sample size in the PLD arm varied from 71 to 466 patients and in the paclitaxel arm from 86 to 509. Among the 7 studies included, 6 reported on toxicity profile (anemia, neutropenia, thrombocytopenia, allergy, neurotoxicity) 5 reported on nausea and vomiting and fatigue, 4 reported on overall survival, progression free survival, overall response rate, cardiotoxicity and 3 reported on leukopenia, partial and complete response rate.

## Methodological Quality of the Studies Included

We performed assessments of risk of bias for RCTs and reported in Table II. All the trials had low risk of bias in relation to random sequence generation and allocation concealment. All the trials had high risk of bias related to blinding of participants and outcome assessment. Intention to treat analysis was performed in all the trials to account for incomplete outcome data. The trials conducted as part of multi-country had high risk of bias related to selective reporting of outcome<sup>7,17-19,21</sup>.

## **Overall Survival (OS)**

Among the studies included, four reported on overall survival of ovarian cancer patients following chemotherapy in both arms (PLD + Carboplatin and Paclitaxel + Carboplatin)<sup>16,19-21</sup>. None of the included studies revealed conclusive evidence on the superiority of the drugs in improving overall survival. The pooled HR was 0.98 indicating that PLD combination has lesser death events when compared to Paclitaxel combination (Figure 2). However, the confidence of this pooled estimate crossed the null value (95% CI, 0.87-1.11), and the result is not statistically significant. This shows that PLD combination is non-inferior to paclitaxel combination in terms of overall survival of ovarian cancer patients. Moreover, we found

no heterogeneity among the studies reporting response rate with  $I^2=0\%$ . The Chi-square for heterogeneity also showed absence of significant heterogeneity among the studies reporting overall survival (p=0.53).

## Progression Free Survival (PFS)

Five studies reported on progression free survival of ovarian cancer patients following chemotherapy in both  $\operatorname{arms}^{7,17-20}$ . The pooled HR was 0.87 (95% CI: 0.77-0.98) (Figure 3). This indicates that the ovarian cancer patients receiving PLD combination drugs can survive for a longer duration without disease progression when compared to patients receiving paclitaxel combination drug and this result was statistically significant (*p*=0.02). Also, we did not find any significant heterogeneity in the included studies reporting progression free survival (I<sup>2</sup>=40%, *p*=0.16).

## Disease Progression Rate

Four studies reported on disease progression rate in both arms<sup>16,17,19,20</sup>. Except Mahner et al<sup>19</sup>, all the other studies favour paclitaxel combination with pooled RR of 0.87 with 95% CI: 0.61-1.24 (Figure 4). This shows that the evidence is not conclusive to tell which method results in decreased disease progression rate. It shows that the PLD combination is non-inferior to paclitaxel combination in disease progression rate. We did not find any heterogeneity among the studies reporting disease progression rate (I<sup>2</sup>=0%, p=0.95).

## Overall Response Rate (ORR)

Among the studies<sup>16,17,19,20</sup> included in the review, four studies reported an overall response rate in both arms<sup>16,17,19,20</sup>. Except Mahner et al<sup>19</sup>, all the other studies favour paclitaxel combination with pooled RR of 1.07 with 95% CI: 0.94-1.20 (Figure 5A). This shows that the overall response rate was better for paclitaxel combination when compared to PLD combination. However, this result was not statistically significant (p=0.31). We did not find any heterogeneity among the studies reporting disease progression rate (I<sup>2</sup>=0%, p=0.54).

## Complete Response Rate

Three studies reported on complete response rate in both groups<sup>16,17,20</sup>. The pooled RR was 1.00 (95% CI: 0.61-1.63) (Figure 5B). This shows that there was no significant difference between

| S. No | Author and year                    | Random<br>sequence<br>generation | Allocation concealment | Blinding of<br>the participants,<br>outcome assessment | Incomplete<br>outcome<br>data | Selective<br>reporting<br>of outcome | Other<br>risk<br>of bias |
|-------|------------------------------------|----------------------------------|------------------------|--------------------------------------------------------|-------------------------------|--------------------------------------|--------------------------|
| 1.    | Bafaloukos 2010 <sup>16</sup>      | Low risk                         | Low risk               | High risk                                              | Low risk                      | Unclear risk                         | Low risk                 |
| 2.    | Gladieff 201217                    | Low risk                         | Low risk               | High risk                                              | Low risk                      | High risk                            | Low risk                 |
| 3.    | Kurtz 2011 <sup>18</sup>           | Low risk                         | Low risk               | High risk                                              | Low risk                      | High risk                            | Low risk                 |
| 4.    | Mahner 2014 <sup>19</sup>          | Low risk                         | Low risk               | High risk                                              | Low risk                      | High risk                            | Low risk                 |
| 5.    | Pignata 2011 <sup>20</sup>         | Low risk                         | Low risk               | High risk                                              | Low risk                      | Unclear risk                         | Low risk                 |
| 6.    | Pujade-Lauraine, 2010 <sup>7</sup> | Low risk                         | Low risk               | High risk                                              | Low risk                      | High risk                            | Low risk                 |
| 7.    | Wagner 2012 <sup>21</sup>          | Low risk                         | Low risk               | High risk                                              | Low risk                      | High risk                            | Low risk                 |

**Table II.** Risk of bias assessment for the included studies, N = 7.



Figure 2. Forest plot showing the difference in overall survival between paclitaxel and PLE combination therapy (n=4).



Figure 3. Forest plot showing the difference in progression free survival between paclitaxel and PLE combination therapy (n=5).

the two groups in terms of complete response rate (p=0.99). There was moderate heterogeneity among the studies reporting complete response rate ( $I^{2}=58\%$ , p=0.09).

#### Partial Response Rate

Three studies reported on partial response rate in both groups<sup>16,17,20</sup>. The pooled RR was 1.14 (95% CI: 0.91-1.44) (Figure 5C). Here also, there is no conclusive evidence to prove that the paclitaxel combination is superior to PLD combination (p=0.26). There was mild hetero-

geneity among the studies reporting partial response rate, but it was not statistically significant (I<sup>2</sup>=29%, p=0.25).

#### Disease Control Rate

Two studies reported on disease control rate in both arms<sup>16,17</sup>. The pooled RR was 1.03 (95% CI: 0.93-1.13) favouring the paclitaxel combination, but the result was not statistically significant (p=0.61) (Figure 6). We did not find any heterogeneity among the studies reporting disease control rate ( $1^2$ =0%, p=0.34).



Figure 4. Forest plot showing the difference in disease progression rate between paclitaxel and PLE combination therapy (n=4).

| А                                 | D                                     |          |                               |       |         | 01-1-0-11-                     | <b>Di-L D-1</b>                              |
|-----------------------------------|---------------------------------------|----------|-------------------------------|-------|---------|--------------------------------|----------------------------------------------|
| Study or Subgroup                 | Paciftaxel + Carbop                   | Total    | PLD + Carbop                  | Total | Meight  | KISK Katio<br>N/ Random 95% Cl | Risk Ratio                                   |
| Bafaloukos 2010                   | 56                                    | 96       | 47                            | 93    | 21.3%   | 1 15 [0 89 1 50]               |                                              |
| Gladieff 2012                     | 83                                    | 183      | 63                            | 161   | 23.5%   | 1 16 (0.90, 1.49)              |                                              |
| Mahner 2014                       | 48                                    | 128      | 55                            | 131   | 16.2%   | 0.89 (0.66, 1.21)              |                                              |
| Pignata 2011                      | 95                                    | 160      | 78                            | 137   | 39.0%   | 1.04 [0.86, 1.27]              |                                              |
| Total (95% CI)                    |                                       | 567      |                               | 522   | 100.0%  | 1.07 (0.94, 1.20)              |                                              |
| Total events                      | 202                                   |          | 242                           | 022   | 1001070 | 101 [0104, 1120]               |                                              |
| Hotorogeneity Tou? -              | - 0 00 · Chiž – 2 16 df-              | - 2 /P - | 0.64\:12=0%                   |       |         | -                              |                                              |
| Test for overall effect:          | Z = 1.02 (P = 0.31)                   |          | 0.54),1 = 0.0                 |       |         |                                | 0.7 0.85 1 1.2 1.5                           |
| в                                 |                                       |          |                               |       |         |                                |                                              |
| 2                                 | Daclitavel + Carbo                    | nlatin   | DID + Carbor                  | latin |         | Risk Ratio                     | Risk Ratio                                   |
| Study or Subgroup                 | Events                                | Total    | Events                        | Total | Weight  | N. Random, 95% Cl              | N. Bandom, 95% Cl                            |
| Bafaloukos 2010                   | 33                                    | 90       | 21                            | 93    | 37.5%   | 1 52 (0 95 2 43)               |                                              |
| Gladieff 2012                     | 14                                    | 183      | 19                            | 161   | 28.1%   | 0.65 (0.34, 1.25)              |                                              |
| Pignata 2011                      | 24                                    | 160      | 23                            | 137   | 34.4%   | 0.89 [0.53, 1.51]              | <b>_</b>                                     |
|                                   |                                       |          |                               |       |         |                                |                                              |
| Total (95% CI)                    |                                       | 439      |                               | 391   | 100.0%  | 1.00 [0.61, 1.63]              |                                              |
| Total events                      | 71                                    |          | 63                            |       |         |                                |                                              |
| Heterogeneity: Tau <sup>2</sup> : | = 0.11; Chi <sup>2</sup> = 4.86, df   | = 2 (P = | : 0.09); I <sup>2</sup> = 59% |       |         |                                |                                              |
| Test for overall effect           | : Z = 0.01 (P = 0.99)                 |          |                               |       |         |                                | Eavours Doxorubicin+CP Eavours Paclitaxel+CP |
| С                                 |                                       |          |                               |       |         |                                |                                              |
| č                                 | Dealitaval + Carbon                   | latin    |                               | latin |         | Dick Datio                     | Bick Potio                                   |
| Study or Subgroup                 | Fvents                                | Total    | Events                        | Total | Weight  | N. Random, 95% Cl              | N. Random, 95% Cl                            |
| Bafaloukos 2010                   | 23                                    | 96       | 26                            | 93    | 18.9%   | 0.86 [0.53, 1.39]              |                                              |
| Gladieff 2012                     | 69                                    | 183      | 44                            | 161   | 36.5%   | 1.38 [1.01, 1.89]              | <b>_</b>                                     |
| Pignata 2011                      | 71                                    | 160      | 55                            | 137   | 44.6%   | 1.11 [0.85, 1.45]              | <b>_</b>                                     |
|                                   |                                       |          |                               |       |         |                                |                                              |
| Total (95% CI)                    |                                       | 439      |                               | 391   | 100.0%  | 1.14 [0.91, 1.44]              |                                              |
| Total events                      | 163                                   |          | 125                           |       |         |                                |                                              |
| Heterogeneity: Tau <sup>2</sup> = | : 0.01; Chi <sup>2</sup> = 2.80, df : | = 2 (P = | 0.25); l² = 29%               |       |         | -                              | 0.5 0.7 1 1.5 2                              |
| Test for overall effect:          | Z = 1.13 (P = 0.26)                   |          |                               |       |         |                                | Favours Doxorubicin+CP Favours Paclitaxel+CP |
|                                   |                                       |          |                               |       |         |                                |                                              |

**Figure 5. A**, Forest plot showing the difference in overall response rate between paclitaxel and PLE combination therapy (n=4). **B**, Forest plot showing the difference in complete response rate between paclitaxel and PLE combination therapy (n=3). **C**, Forest plot showing the difference in partial response rate between paclitaxel and PLE combination therapy (n=3).

## **Toxicity Profile**

Toxicity profile was assessed for the worst grade symptoms ( $\geq$  Grade 3 symptoms) alone between both groups. We compared the incidence of hematological and non-hematological manifestations following the treatment in both groups.

#### Hematological Manifestations

#### Anemia

Six studies reported on the incidence of anemia in both groups<sup>7,16-20</sup>. The pooled RR was 0.52 (95% CI: 0.38-0.70) favouring the paclitaxel combination patients (Figure 7A). This shows that ovarian cancer patients taking paclitaxel combination had 48% less chance of developing anemia when compared to PLD combination patients and this result was statistically significant (p<0.001). Also, we did not find any heterogeneity among the studies reporting anemia incidence following treatment (I<sup>2</sup>=0%, p=0.52).

## Leukopenia

Three studies reported on the incidence of leukopenia in both groups<sup>16,19,20</sup>. All the studies

|                                   | Paclitaxel + Carbo                 | oplatin | PLD + Carbo                | platin |        | Risk Ratio         | Risk Ratio                                   |
|-----------------------------------|------------------------------------|---------|----------------------------|--------|--------|--------------------|----------------------------------------------|
| Study or Subgroup                 | Events                             | Total   | Events                     | Total  | Weight | IV, Random, 95% Cl | IV, Random, 95% Cl                           |
| Bafaloukos 2010                   | 71                                 | 96      | 62                         | 93     | 25.8%  | 1.11 [0.92, 1.34]  |                                              |
| Gladieff 2012                     | 144                                | 183     | 127                        | 161    | 74.2%  | 1.00 [0.89, 1.11]  |                                              |
| Total (95% CI)                    |                                    | 279     |                            | 254    | 100.0% | 1.03 [0.93, 1.13]  | +                                            |
| Total events                      | 215                                |         | 189                        |        |        |                    |                                              |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; Chi <sup>2</sup> = 0.93, d | f=1 (P= | 0.34); I <sup>2</sup> = 0% |        |        |                    |                                              |
| Test for overall effect:          | Z = 0.52 (P = 0.61)                |         |                            |        |        |                    | Favours Doxorubicin+CP Favours Paclitaxel+CP |

Figure 6. Forest plot showing the difference in disease control rate between paclitaxel and PLE combination therapy (n=2).

| * *                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                             | Paclitaxel + Carbo                                                                                                                                                                                 | platin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLD + Carbop                                                                                                                                             | platin                                                                                                                                   |                                                                                                                                                | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Risk Ratio                                                      |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                           | Events                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Events                                                                                                                                                   | Total                                                                                                                                    | Weight                                                                                                                                         | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV, Random, 95% Cl                                              |
| Bafaloukos 2010                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                        | 84                                                                                                                                       | 5.7%                                                                                                                                           | 0.35 [0.10, 1.29]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Gladieff 2012                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                  | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                                                                                                                                       | 161                                                                                                                                      | 14.4%                                                                                                                                          | 0.42 [0.19, 0.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Kunz 2011                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                  | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                        | 11                                                                                                                                       | 3.1%                                                                                                                                           | 1.24 [0.21, 7.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Mahner 2014                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                  | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                        | 131                                                                                                                                      | 6.6%                                                                                                                                           | 0.58 [0.18, 1.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Pignata 2011                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                 | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                                                                                                                                                       | 396                                                                                                                                      | 28.7%                                                                                                                                          | 0.36 [0.20, 0.65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                 | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                       | 466                                                                                                                                      | 41.5%                                                                                                                                          | 0.68 [0.42, 1.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    | 1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          | 1309                                                                                                                                     | 100.0%                                                                                                                                         | 0.52 [0.38, 0.70]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ◆                                                               |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
| Heterogeneity: Tau <sup>2</sup> = 0.0                                                                                                                                                                                                                                                                                                                                                                                       | 00; Chi <sup>2</sup> = 4.20, df = 5                                                                                                                                                                | (P = 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2); I <sup>2</sup> = 0%                                                                                                                                  |                                                                                                                                          |                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                                | 4.21 (P < 0.0001)                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Favours Paclitaxel+CP Favours Doxorubicin+CP                    |
| В                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | Paclitaxel + Carbop                                                                                                                                                                                | latin P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LD + Carbopla                                                                                                                                            | atin                                                                                                                                     |                                                                                                                                                | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Risk Ratio                                                      |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                           | Events                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Events                                                                                                                                                   | Total V                                                                                                                                  | Veight N                                                                                                                                       | , Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV, Random, 95% CI                                              |
| Bafaloukos 2010                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                        | 84                                                                                                                                       | 12.9%                                                                                                                                          | 1.13 [0.36, 3.57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Mahner 2014                                                                                                                                                                                                                                                                                                                                                                                                                 | 25                                                                                                                                                                                                 | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                       | 131                                                                                                                                      | 28.0%                                                                                                                                          | 2.56 [1.28, 5.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Pignata 2011                                                                                                                                                                                                                                                                                                                                                                                                                | 77                                                                                                                                                                                                 | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57                                                                                                                                                       | 396                                                                                                                                      | 59.1%                                                                                                                                          | 1.31 [0.96, 1.80]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + <b>=</b> -                                                    |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    | 624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                          | 611 1                                                                                                                                    | 00.0%                                                                                                                                          | 1.55 (0.99, 2.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                               |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                | 108                                                                                                                                                                                                | 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72                                                                                                                                                       | •                                                                                                                                        | 00.010                                                                                                                                         | 100 [0100, 2111]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                               |
| Heterogeneit/ Tau <sup>2</sup> = 0                                                                                                                                                                                                                                                                                                                                                                                          | 06: Chi <sup>2</sup> = 314 df =                                                                                                                                                                    | 2(P = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21): IF = 36%                                                                                                                                            |                                                                                                                                          |                                                                                                                                                | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
| Test for overall effect: Z                                                                                                                                                                                                                                                                                                                                                                                                  | = 1.92 (P = 0.05)                                                                                                                                                                                  | 20 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 217,1 = 30 %                                                                                                                                             |                                                                                                                                          |                                                                                                                                                | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01 0.1 1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP |
| С                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                             | Paclitaxel + Carb                                                                                                                                                                                  | onlatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PID + Carbo                                                                                                                                              | nlatin                                                                                                                                   |                                                                                                                                                | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Risk Batio                                                      |
| Churche an Curbon and                                                                                                                                                                                                                                                                                                                                                                                                       | . aontarior ourn                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
| Study of Subgroup                                                                                                                                                                                                                                                                                                                                                                                                           | Events                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Events                                                                                                                                                   | Total                                                                                                                                    | Weight                                                                                                                                         | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV, Random, 95% CI                                              |
| Bafaloukos 2010                                                                                                                                                                                                                                                                                                                                                                                                             | Events<br>2                                                                                                                                                                                        | Total<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Events<br>10                                                                                                                                             | Total<br>84                                                                                                                              | Weight<br>7.1%                                                                                                                                 | V, Random, 95% Cl<br>0.19 (0.04, 0.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IV, Random, 95% Cl                                              |
| Bafaloukos 2010<br>Gladieff 2012                                                                                                                                                                                                                                                                                                                                                                                            | Events<br>2<br>12                                                                                                                                                                                  | Total<br>89<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Events<br>10<br>24                                                                                                                                       | Total<br>84<br>161                                                                                                                       | Weight<br>7.1%<br>20.0%                                                                                                                        | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N, Random, 95% Cl                                               |
| Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011                                                                                                                                                                                                                                                                                                                                                                              | Events<br>2<br>12<br>7                                                                                                                                                                             | Total<br>89<br>180<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Events<br>10<br>24<br>12                                                                                                                                 | Total<br>84<br>161<br>71                                                                                                                 | Weight<br>7.1%<br>20.0%<br>14.9%                                                                                                               | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N, Random, 95% Cl                                               |
| Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014                                                                                                                                                                                                                                                                                                                                                               | Events<br>2<br>12<br>7<br>4                                                                                                                                                                        | Total<br>89<br>180<br>86<br>128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Events<br>10<br>24<br>12<br>16                                                                                                                           | Total<br>84<br>161<br>71<br>131                                                                                                          | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%                                                                                                      | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N, Random, 95% Cl                                               |
| Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011                                                                                                                                                                                                                                                                                                                                               | Events<br>2<br>12<br>7<br>4<br>8                                                                                                                                                                   | Total<br>89<br>180<br>86<br>128<br>407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Events<br>10<br>24<br>12<br>16<br>63                                                                                                                     | Total<br>84<br>161<br>71<br>131<br>396                                                                                                   | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%                                                                                             | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N, Random, 95% Cl                                               |
| Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                       | Events<br>2<br>12<br>7<br>4<br>8<br>31                                                                                                                                                             | Total<br>89<br>180<br>86<br>128<br>407<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Events<br>10<br>24<br>12<br>16<br>63<br>74                                                                                                               | Total<br>84<br>161<br>71<br>131<br>396<br>466                                                                                            | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%                                                                                    | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)                                                                                                                                                                                                                                                                                | Events<br>2<br>12<br>7<br>4<br>8<br>31                                                                                                                                                             | Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Events<br>10<br>24<br>12<br>16<br>63<br>74                                                                                                               | Total<br>84<br>161<br>71<br>131<br>396<br>466<br>1309                                                                                    | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%                                                                                    | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N, Random, 95% Cl                                               |
| Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events                                                                                                                                                                                                                                                                                     | Events<br>2<br>12<br>7<br>4<br>8<br>31                                                                                                                                                             | Total<br>89<br>180<br>86<br>128<br>407<br>501<br><b>1391</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199                                                                                                        | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>                                                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%                                                                          | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heteronenith: Tau <sup>2</sup> = 0                                                                                                                                                                                                                          | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14: Chi≅ = 10.05 dfs                                                                                                                               | Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 5 (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07): P = 50%                                                                                        | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>                                                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%                                                                          | V, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                                                                                                                                                                                           | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>.14; Chi <sup>2</sup> = 10.05, df=<br>= 5.28 (P < 0.00001)                                                                                         | Total<br>89<br>180<br>86<br>128<br>407<br>501<br><b>1391</b><br>= 5 (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); I <sup>a</sup> = 50%                                                                           | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>                                                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%                                                                          | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z                                                                                                                                                                                          | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi <sup>2</sup> = 10.05, df =<br>5.28 (P < 0.00001)                                                                                           | <b>Total</b><br>89<br>180<br>86<br>128<br>407<br>501<br><b>1391</b><br>= 5 (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>.07); I <sup>2</sup> = 50%                                                                          | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>                                                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%                                                                          | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V, Random, 95% Cl                                               |
| Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z:<br>D                                                                                                                                                                                                         | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi <sup>2</sup> = 10.05, df =<br>5.28 (P < 0.00001)<br>Paclitaxel + Carb                                                                      | <b>Total</b><br>89<br>180<br>86<br>128<br>407<br>501<br><b>1391</b><br>= 5 (P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>.07); F = 50%<br>PLD + Carbo                                                                        | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>                                                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%                                                                          | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Bisk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z<br>D                                                                                                                                                                                     | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>.14: Chi <sup>2</sup> = 10.05, df=<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events                                                          | Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 5 (P = 0<br>oplatin<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); № = 50%<br>PLD + Carbo<br>Events                                                               | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>                                                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%                                                                 | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pigata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010                                                                                                                                              | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>.14; Chi <sup>2</sup> = 10.05, df=<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27                                                    | Total           89           180           86           128           407           501           1391           = 5 (P = 0)           oplatin           Total           89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); ₱ = 50%<br>PLD + Carboo<br>Events<br>30                                                        | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b><br>platin<br>Total<br>84                                                    | Weight<br>7.1%<br>20.0%<br>14.9%<br>14.9%<br>14.9%<br>14.9%<br>27.8%<br>100.0%<br>Weight<br>14.8%                                              | N, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>N, Random, 95% CI<br>0.35 [0.55, 1, 20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012                                                                                                                                             | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi² = 10.05, df =<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91                                                          | Total           89           180           86           128           407           501           1391           = 5 (P = 0           oplatin           Total           89           180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); P = 50%<br>PLD + Carbo<br>Events<br>30<br>62                                                   | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b><br>platin<br>Total<br>84<br>161                                             | Weight<br>7.1%<br>20.0%<br>14.9%<br>14.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%                                              | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>IV, Random, 95% CI<br>0.85 [0.55, 1.30]<br>1.31 [10.3, 1.67]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N, Random, 95% Cl                                               |
| Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>a</sup> = 0<br>Test for overall effect: Z<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011                                                                                                                               | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi <sup>2</sup> = 10.05, df =<br>5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35                                          | Total           89           180           86           128           407           501           1391           = 5 (P = 0           oplatin           Total           89           180           89           180           89           180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); ₽ = 50%<br>PLD + Carboo<br>Events<br>30<br>62<br>30                                            | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b><br><b>pplatin</b><br>84<br>84<br>161<br>71                                  | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%<br>16.1%                                     | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>IV, Random, 95% CI<br>0.85 [0.55, 1.30]<br>1.31 [1.03, 1.67]<br>0.96 [0.66, 1.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladief 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z:<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014                                                                                                                 | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi <sup>2</sup> = 10.05, df =<br>5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35<br>51                                    | Total           89           180           86           128           407           501           1391           1391           = 5 (P = 0           oplatin           Total           89           180           89           180           89           180           86           128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); F = 50%<br>PLD + Carboo<br>Events<br>30<br>62<br>30<br>36                                      | Total<br>84<br>161<br>71<br>396<br>466<br><b>1309</b><br><b>1309</b><br><b>1309</b><br>84<br>161<br>71<br>131                            | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%<br>16.1%                                     | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>IV, Random, 95% CI<br>0.85 [0.55, 1.30]<br>1.31 [1.03, 1.67]<br>0.96 [0.66, 1.40]<br>1.45 [1.02, 2.06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011                                                                               | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14: Chi² = 10.05, df=<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35<br>51<br>15                                         | Total           89           180           86           128           407           501           1391           = 5 (P = 0.           oplatin           Total           89           180           89           180           86           128           407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); ₱ = 50%<br>PLD + Carbo<br>Events<br>30<br>62<br>30<br>36<br>40                                 | Total<br>84<br>161<br>71<br>3966<br>466<br><b>1309</b><br><b>platin</b><br>Total<br>84<br>161<br>71<br>396                               | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%<br>16.1%<br>16.7%<br>11.3%                   | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>IV, Random, 95% CI<br>0.85 [0.55, 1.30]<br>1.31 [1.03, 1.67]<br>0.96 [0.66, 1.40]<br>1.45 [1.02, 2.06]<br>0.36 [0.20, 0.65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010                                                                         | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi² = 10.05, df=<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35<br>51<br>15<br>229                                  | Total           89           180           86           128           407           501           1391           1391           = 5 (P = 0)           oplatin           Total           89           180           89           180           86           128           407           501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); ₱ = 50%<br>PLD + Carboo<br>Events<br>30<br>62<br>30<br>62<br>30<br>36<br>40<br>164             | Total<br>84<br>161<br>711<br>396<br>466<br><b>1309</b><br><b>1309</b><br><b>1309</b><br>84<br>161<br>71<br>131<br>396<br>466<br>466      | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%<br>16.1%<br>16.1%<br>16.7%<br>11.3%<br>21.5% | IV, Random, 95% CI<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>IV, Random, 95% CI<br>0.85 [0.55, 1.30]<br>1.31 [1.03, 1.67]<br>0.86 [0.56, 1.40]<br>1.45 [1.02, 2.06]<br>0.36 [0.20, 0.65]<br>1.30 [1.11, 1.52]                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)                                     | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi <sup>2</sup> = 10.05, df =<br>5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35<br>51<br>15<br>229                       | Total<br>89<br>180<br>86<br>128<br>407<br>501<br><b>1391</b><br>= 5 (P = 0<br>oplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br><b>1391</b><br>180<br>180<br>180<br>180<br>180<br>128<br>407<br>501<br><b>1391</b><br>180<br>180<br>180<br>180<br>180<br>180<br>180<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); F = 50%<br>PLD + Carboo<br>Events<br>30<br>62<br>30<br>62<br>30<br>62<br>30<br>62<br>30<br>164 | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b><br><b>1309</b><br>84<br>161<br>71<br>133<br>84<br>466<br>466<br><b>1309</b> | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%<br>16.7%<br>11.3%<br>21.5%<br>100.0%         | N, Random, 95% Cl<br>0.19 [0.04, 0.84]<br>0.45 [0.23, 0.86]<br>0.48 [0.20, 1.16]<br>0.26 [0.09, 0.74]<br>0.12 [0.06, 0.25]<br>0.39 [0.26, 0.58]<br>0.30 [0.19, 0.47]<br>Risk Ratio<br>N, Random, 95% Cl<br>0.85 [0.55, 1.30]<br>1.31 [1.03, 1.67]<br>0.96 [0.66, 1.40]<br>1.45 [1.02, 2.06]<br>0.36 [0.20, 0.65]<br>1.30 [1.11, 1.52]<br>1.03 [0.78, 1.35]                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events                     | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi² = 10.05, df=<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35<br>51<br>15<br>229<br>448                           | Total           89           180           86           128           407           501           1391           e 5 (P = 0.           oplatin           Total           89           180           89           180           86           128           407           501           1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); ₱ = 50%<br>PLD + Carboo<br>Events<br>30<br>62<br>30<br>36<br>40<br>164<br>362                  | Total<br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b><br><b>1309</b><br>84<br>161<br>71<br>131<br>396<br>466<br><b>1309</b>       | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>19.5%<br>16.1%<br>16.7%<br>16.7%<br>11.3%<br>21.5% | <ul> <li>IV, Random, 95% CI</li> <li>0.19 [0.04, 0.84]</li> <li>0.45 [0.23, 0.86]</li> <li>0.48 [0.20, 1.16]</li> <li>0.26 [0.09, 0.74]</li> <li>0.12 [0.06, 0.25]</li> <li>0.39 [0.26, 0.58]</li> <li>0.30 [0.19, 0.47]</li> <li>0.30 [0.19, 0.47]</li> <li>0.85 [0.55, 1.30]</li> <li>1.31 [1.03, 1.67]</li> <li>0.96 [0.66, 1.40]</li> <li>1.45 [1.02, 0.06]</li> <li>1.30 [1.11, 1.52]</li> <li>1.03 [0.78, 1.35]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     | N, Random, 95% Cl                                               |
| Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z<br>D<br>Study of Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0 | Events<br>2<br>12<br>7<br>4<br>8<br>31<br>64<br>14; Chi² = 10.05, df =<br>= 5.28 (P < 0.00001)<br>Paclitaxel + Carb<br>Events<br>27<br>91<br>35<br>51<br>15<br>229<br>448<br>08: Chi² = 22.82 df = | Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 5 (P = 0<br>oplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>1391<br>1393<br>128<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>1 | Events<br>10<br>24<br>12<br>16<br>63<br>74<br>199<br>07); P = 50%<br>PLD + Carbo<br>Events<br>30<br>62<br>30<br>36<br>40<br>164<br>362<br>0004); P = 78° | Total<br>84<br>161<br>131<br>396<br>466<br><b>1309</b><br><b>1309</b><br><b>1309</b><br>84<br>466<br>466<br><b>1309</b><br>%             | Weight<br>7.1%<br>20.0%<br>14.9%<br>11.7%<br>18.4%<br>27.8%<br>100.0%<br>Weight<br>14.8%<br>100.0%                                             | N, Random, 95% CI           0.19 [0.04, 0.84]           0.45 [0.23, 0.86]           0.48 [0.20, 1.16]           0.26 [0.09, 0.74]           0.12 [0.06, 0.25]           0.39 [0.26, 0.58]           0.30 [0.19, 0.47]           Name           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.19, 0.47]           0.30 [0.26, 0.55]           1.31 [1.03, 1.67]           0.36 [0.26, 1.40]           1.45 [1.02, 2.06]           0.36 [0.20, 0.65]           1.30 [1.11, 1.52]           1.03 [0.78, 1.35] | M, Random, 95% Cl                                               |

**Figure 7. A**, Forest plot showing the difference in anemia incidence between paclitaxel and PLE combination therapy (n=6). **B**, Forest plot showing the difference in leukopenia incidence between paclitaxel and PLE combination therapy (n=3). **C**, Forest plot showing the difference in thrombocytopenia incidence between paclitaxel and PLE combination therapy (n=6). **D**, Forest plot showing the difference in neutropenia incidence between paclitaxel and PLE combination therapy (n=6).

reported that the patients receiving paclitaxel combination have more chance of developing leukopenia. The pooled RR was 1.55 (95% CI: 0.99-2.44) favouring the PLD combination patients (Figure 7B). This shows that the results are not statistically significant. We found mild heterogeneity among the studies reporting leukopenia prevalence following treatment ( $I^2=36\%$ , p=0.21).

#### Thrombocytopenia

Six studies reported on the prevalence of thrombocytopenia in both groups<sup>7,16-20</sup>. All the studies reported results favouring the patients receiving paclitaxel combination. The pooled RR was 0.30 (95% CI: 0.19-0.47) (Figure 7C). This shows that the patients receiving paclitaxel combination therapy have significantly lesser risk of developing thrombocytopenia during the treat-

ment when compared to patients receiving PLD combination therapy (p < 0.001). We found moderate heterogeneity among the studies reporting thrombocytopenia incidence following treatment ( $I^{2}=50\%$ , p=0.07).

#### Neutropenia

Six studies reported on the incidence of neutropenia following the treatment in both groups<sup>7,16-20</sup>. Half the studies reported results favouring the patients receiving paclitaxel combination and rest half favoured PLD combination. The pooled RR was 1.03 (95% CI: 0.78-1.35) (Figure 7D). This shows that there is no statistically significant difference between the two groups in terms of neutropenia incidence following treatment (p=0.84). We found significant heterogeneity among the studies reporting neutropenia incidence following treatment (I<sup>2</sup>=78%, p<0.001).

#### **Non-Hematological Manifestations**

#### Nausea/Vomiting

Five studies reported on the incidence of nausea/vomiting during combination chemotherapy in both groups<sup>1,7,16,19,20</sup>. Except Mahner et al<sup>19</sup>, all other studies favoured paclitaxel combination therapy. The pooled RR was 0.66 (95% CI: 0.32-1.37) (Figure 8A). These estimates show that there is no conclusive evidence in determining the risk of nausea/vomiting between the groups (p=0.27). There was a significant heterogeneity among the studies reporting nausea/vomiting (I<sup>2</sup>=63%, p=0.04).

#### Fatigue

Five studies reported on the incidence of fatigue during combination chemotherapy in both groups<sup>1,7,16,19,20</sup>. All the studies favoured paclitaxel combination therapy. However, the pooled RR was 0.84 (95% CI: 0.53-1.34) (Figure 8B). These estimates show that there is no conclusive evidence in determining the risk of fatigue between the groups (p=0.48). There was no heterogeneity among the studies reporting fatigue (I<sup>2</sup>=0%, p=0.76).

#### Allergy

Six studies reported on the incidence of allergy during combination chemotherapy in both groups<sup>7,16-20</sup>. Except Bafaloukos et al<sup>16</sup>, all other studies favoured PLD combination therapy. The pooled RR was 1.86 (95% CI: 1.06-3.24) (Figure 8C). This shows that patients receiving paclitaxel combination therapy have 1.86 times higher risk of developing allergy during the treatment when compared to PLD combination therapy and this was statistically significant (p=0.03). There was no heterogeneity among the studies reporting allergy (I<sup>2</sup>=0%, p=0.40).

#### Neurotoxicity

Six studies reported on the incidence of neurotoxicity during combination chemotherapy in both groups<sup>7,16-20</sup>. All the studies favoured PLD combination therapy. The pooled RR was 5.59 (95% CI: 1.43-21.84) (Figure 8D). This shows that patients receiving paclitaxel combination therapy has 5.59 times higher risk of developing neurotoxicity during the treatment when compared to PLD combination therapy and this was statistically significant (p=0.01). There was mild heterogeneity among the studies reporting neurotoxicity, but it was not statistically significant ( $I^2$ =41%, p=0.17).

#### Cardiotoxicity

Four studies reported on the incidence of cardiotoxicity during combination chemotherapy in both groups<sup>7,16,17,20</sup>. The pooled RR was 0.51 (95% CI: 0.06-3.99) (Figure 8E). This shows that there is no conclusive evidence in determining the risk of cardiotoxicity between the two groups (p=0.52). There was moderate heterogeneity among the studies reporting neurotoxicity, but it was not statistically significant (I<sup>2</sup>=56%, p=0.13).

#### Discussion

The management of ovarian cancer has varied historically and is grade-dependent. However, platinum agents like carboplatin in combination with paclitaxel have been commonly used in the treatment of ovarian cancer for high grade patients. These agents have their own advantage and disadvantages. PLD has been proven to be a safer alternative with minimal toxicity and equivalent efficacy in trials conducted around the world. However, there is a lack of systematic and high-quality research comparing these two combination chemotherapeutic agents directly. Hence, we conducted this review to compare the efficacy and safety of PLD + carboplatin and paclitaxel + carboplatin, in terms of outcomes such as overall survival, progression free survival, disease progression, and control rate, overall response rate (both complete and partial) and toxicity profile

| А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charles and Carl and Carl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Paclitaxel + Car                                                                                                                                                                                                                                                                                                                                                                                                                                              | rboplatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLD + Carbo                                                                                                                                                                      | platin                                                                                                                                                                                                   |                                                                                                                       | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Risk Ratio                                                                                                                                                                                                                                                         |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Events                                                                                                                                                                           | Total                                                                                                                                                                                                    | weight                                                                                                                | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | IV, Random, 95% Cl                                                                                                                                                                                                                                                 |
| Bataloukos 2010<br>Gladieff 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>29                                                                                                                                                                          | 84<br>161                                                                                                                                                                                                | 32 3%                                                                                                                 | 0.24 [0.03, 2.07]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Mahner 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29                                                                                                                                                                               | 131                                                                                                                                                                                                      | 27.9%                                                                                                                 | 1.48 [0.65, 3.34]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Pignata 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                               | 396                                                                                                                                                                                                      | 30.9%                                                                                                                 | 0.80 [0.40, 1.60]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                | 466                                                                                                                                                                                                      |                                                                                                                       | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                    |
| T-4-1 (054) OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  | 4000                                                                                                                                                                                                     | 400.00                                                                                                                | 0.0010.00.4.071                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                    |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  | 1238                                                                                                                                                                                                     | 100.0%                                                                                                                | 0.66 [0.32, 1.37]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4U                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 2 /0 - 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                    |
| Test for overall effect: 7 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 11 (P = 0.09, u)                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 5 (P = 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +), I <sup>-</sup> = 03%                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01 | 0.1 i 10 100                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.11 (1 = 0.21)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Favours Paclitaxel+CP Favours Doxorubicin+CP                                                                                                                                                                                                                       |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Paclitaxel + Ca                                                                                                                                                                                                                                                                                                                                                                                                                                               | rboplatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLD + Carbo                                                                                                                                                                      | oplatin                                                                                                                                                                                                  |                                                                                                                       | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Risk Ratio                                                                                                                                                                                                                                                         |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Events                                                                                                                                                                           | Total                                                                                                                                                                                                    | Weight                                                                                                                | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | IV, Random, 95% Cl                                                                                                                                                                                                                                                 |
| Bafaloukos 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                | 84                                                                                                                                                                                                       |                                                                                                                       | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                    |
| Gladieff 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                               | 161                                                                                                                                                                                                      | 46.1%                                                                                                                 | 0.89 [0.45, 1.77]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Mahner 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                               | 131                                                                                                                                                                                                      | 22.3%                                                                                                                 | 0.61 [0.23, 1.64]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Pignata 2011<br>Pujada Lauraina 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                               | 395                                                                                                                                                                                                      | 31.7%                                                                                                                 | 0.97 [0.43, 2.22]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Fujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                | 400                                                                                                                                                                                                      |                                                                                                                       | Notesumable                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                    |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  | 1238                                                                                                                                                                                                     | 100.0%                                                                                                                | 0.84 [0.53, 1.34]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | <b>•</b>                                                                                                                                                                                                                                                           |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                    |
| Heterogeneity: Tau <sup>2</sup> = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00; Chi² = 0.54, df                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 2 (P = 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6); I² = 0%                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01 |                                                                                                                                                                                                                                                                    |
| Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : 0.71 (P = 0.48)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01 | Favours Paclitaxel+CP Favours Doxorubicin+CP                                                                                                                                                                                                                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                  |                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                    |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Paclitaxel + Ca                                                                                                                                                                                                                                                                                                                                                                                                                                               | rboplatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLD + Carbo                                                                                                                                                                      | oplatin                                                                                                                                                                                                  |                                                                                                                       | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Risk Ratio                                                                                                                                                                                                                                                         |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Events                                                                                                                                                                           | Total                                                                                                                                                                                                    | Weight                                                                                                                | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | IV, Random, 95% Cl                                                                                                                                                                                                                                                 |
| Bafaloukos 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                | 84                                                                                                                                                                                                       | 4.1%                                                                                                                  | 0.94 (0.06, 14.85)                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                                                                                                                    |
| Gladieff 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                | 161                                                                                                                                                                                                      | 32.7%                                                                                                                 | 3.04 [1.15, 8.06]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Kurtz 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                | 71                                                                                                                                                                                                       |                                                                                                                       | Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                    |
| Mahner 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  | 4.54                                                                                                                                                                                                     | - <b>34 4 6</b> 2                                                                                                     | 3661003 7061                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                    |
| Discosts 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                | 131                                                                                                                                                                                                      | 24.170                                                                                                                | 2.00 [0.62, 7.90]                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                    |
| Pignata 2011<br>Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>9<br>0                                                                                                                                                                      | 396                                                                                                                                                                                                      | 39.1%                                                                                                                 | 2.50 [0.62, 7.95]<br>1.08 [0.44, 2.63]<br>Not estimable                                                                                                                                                                                                                                                                                                                                                                                                    |      | <b>_</b>                                                                                                                                                                                                                                                           |
| Pignata 2011<br>Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 407<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>9<br>0                                                                                                                                                                      | 396<br>466                                                                                                                                                                                               | 24.1%<br>39.1%                                                                                                        | 1.08 (0.44, 2.63)<br>Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                                                                                                                    |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 407<br>501<br>1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>9<br>0                                                                                                                                                                      | 396<br>466<br>1309                                                                                                                                                                                       | 39.1%                                                                                                                 | 1.08 [0.44, 2.63]<br>Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                         |      | `                                                                                                                                                                                                                                                                  |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>0<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 407<br>501<br>1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>9<br>0<br>19                                                                                                                                                                | 396<br>466<br>1309                                                                                                                                                                                       | 39.1%                                                                                                                 | 1.08 [0.44, 2.63]<br>Not estimable                                                                                                                                                                                                                                                                                                                                                                                                                         |      | <br>◆                                                                                                                                                                                                                                                              |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df                                                                                                                                                                                                                                                                                                                                                                                                              | 407<br>501<br>1391<br>7= 3 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%                                                                                                                                     | 396<br>466<br>1309                                                                                                                                                                                       | 39.1%                                                                                                                 | 1.86 [1.06, 3.24]                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01 |                                                                                                                                                                                                                                                                    |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)                                                                                                                                                                                                                                                                                                                                                                                         | 407<br>501<br>1391<br>= 3 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>9<br>0<br>19<br>0); I² = 0%                                                                                                                                                 | 396<br>466<br>1309                                                                                                                                                                                       | 24.1%<br>39.1%<br>100.0%                                                                                              | 2.36 (0.82, 7.35)<br>1.08 (0.44, 2.63)<br>Not estimable<br>1.86 [1.06, 3.24]                                                                                                                                                                                                                                                                                                                                                                               | 0.01 | 0.1 10 100<br>Favours DaclitaxeI+CP Favours Doxorubicin+CP                                                                                                                                                                                                         |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)                                                                                                                                                                                                                                                                                                                                                                                               | 407<br>501<br>1391<br>= 3 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>9<br>0<br>19<br>0); I² = 0%                                                                                                                                                 | 396<br>466<br>1309                                                                                                                                                                                       | 24.1%<br>39.1%<br>100.0%                                                                                              | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]                                                                                                                                                                                                                                                                                                                                                                               | L    | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP                                                                                                                                                                                                         |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car                                                                                                                                                                                                                                                                                                                                                                     | 407<br>501<br>1391<br>= 3 (P = 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo                                                                                                                      | 396<br>466<br>1309                                                                                                                                                                                       | 24.1 %<br>39.1 %                                                                                                      | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio                                                                                                                                                                                                                                                                                                                                                                 | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio                                                                                                                                                                                           |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events                                                                                                                                                                                                                                                                                                                                                                 | 407<br>501<br>1391<br>:= 3 (P = 0.4<br>rboplatin<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events                                                                                                            | 396<br>466<br>1309<br>platin<br>Total                                                                                                                                                                    | 24.1 %<br>39.1 %<br>100.0%<br>Weight                                                                                  | 2.30 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio                                                                                                                                                                                                                                                                                                                                                                 | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br><u>Events</u><br>6                                                                                                                                                                                                                                                                                                                                                     | 120<br>407<br>501<br>1391<br>:= 3 (P = 0.4<br>rboplatin<br><u>Total</u><br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>9<br>0<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br><u>Events</u><br>0                                                                                                      | 396<br>466<br>1309<br>platin<br><u>Total</u><br>84                                                                                                                                                       | 24.1%<br>39.1%<br>100.0%<br><u>Weight</u><br>16.6%                                                                    | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]                                                                                                                                                                                                                                                                                                                   | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% Cl                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10                                                                                                                                                                                                                                                                                                                                                      | 120<br>407<br>501<br>1391<br>2 = 3 (P = 0.4<br>2 = 3 (P = 0.4<br>2 = 0.4 | 4<br>9<br>0<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br><u>Events</u><br>0                                                                                                      | 396<br>466<br>1309<br>1309<br><u>Total</u><br>84<br>161                                                                                                                                                  | 24.1%<br>39.1%<br>100.0%<br><u>Weight</u><br>16.6%<br>16.8%                                                           | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]                                                                                                                                                                                                                                                                                    | 0.01 | 0.1 1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% Cl                                                                                                                                                                   |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0                                                                                                                                                                                                                                                                                                                                                 | 120<br>407<br>501<br><b>1391</b><br>= 3 (P = 0.4<br>rboplatin<br><u>Total</u><br>89<br>180<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>9<br>0<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0                                                                                                        | pplatin<br>Total<br>84<br>1309                                                                                                                                                                           | 24.1%<br>39.1%<br>100.0%<br><u>Weight</u><br>16.6%<br>16.8%                                                           | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable                                                                                                                                                                                                                                                                          | 0.01 | 0.1 10 100<br>Favours PaclitaxeI+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6                                                                                                                                                                                                                                                                                                                                            | 120<br>407<br>501<br><b>1391</b><br>real (P = 0.4<br>repoplatin<br>Total<br>89<br>180<br>86<br>128<br>407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>0<br>4                                                                                        | platin<br>1309<br>1309<br>platin<br>Total<br>84<br>161<br>71<br>2006                                                                                                                                     | 24.1%<br>39.1%<br>100.0%<br><u>Weight</u><br>16.6%<br>16.8%<br>40.7%                                                  | 2.36 [0.42, 2.63]<br>1.08 [0.42, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>14.69 [4.5, 2.90, 21]                                                                                                                                                                                                                            | 0.01 | 0,1<br>Favours PaclitaxeI+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                                                   |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                         | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0                                                                                                                                                                                                                                                                                                                                 | 120<br>407<br>501<br>1391<br>read (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0                                                                                   | platin<br>1309<br>1309<br>platin<br>Total<br>84<br>161<br>71<br>131<br>396<br>466                                                                                                                        | 24.1%<br>39.1%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%                                                          | 2.36 [0.42, 2.63]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable                                                                                                                                                                                                             | 0.01 | 0.1<br>Favours PaclitaxeI+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                                                   |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010                                                                                                                                                                                                                                                                                                                                                                         | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0                                                                                                                                                                                                                                                                                                                                 | 120<br>407<br>501<br>1391<br>real (P = 0.4<br>repoplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>0<br>4<br>1<br>0                                                                              | 290<br>466<br>1309<br>1309<br>1309<br>1309<br>84<br>161<br>71<br>131<br>396<br>466                                                                                                                       | 24.1%<br>39.1%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%                                                          | 2.56 [0.22, 7.55]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable                                                                                                                                                                                                      | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                       | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0                                                                                                                                                                                                                                                                                                                                 | 126<br>407<br>501<br>1391<br>2 = 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0                                                                                   | platin<br>Total<br>1309<br>platin<br>Total<br>84<br>161<br>71<br>131<br>396<br>466<br>1309                                                                                                               | 24.1%<br>39.1%<br>100.0%<br><u>Weight</u><br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%                               | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]                                                                                                                                                                         | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                       | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>6<br>12<br>0                                                                                                                                                                                                                                                                                                                 | 126<br>407<br>501<br>1391<br>7 = 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0<br>5                                                                              | platin<br>1309<br>1309<br>1309<br>1309<br>84<br>161<br>71<br>131<br>396<br>466<br>1309                                                                                                                   | 24.1%<br>39.1%<br>100.0%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%                                      | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 (1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]                                                                                                                                                                                | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.:                                                                                                                                                                                                                                                                                              | 10<br>0<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>6<br>12<br>0<br>6<br>12<br>0<br>8<br>79; Chi <sup>2</sup> = 5.09, df                                                                                                                                                                                                                                                         | 120<br>407<br>501<br>1391<br>2 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carboo<br>Events<br>0<br>0<br>4<br>1<br>0<br>5<br>7); I <sup>2</sup> = 41%                                                 | pplatin<br>1309<br>1309<br>1309<br>1309<br>84<br>161<br>131<br>396<br>466<br>1309                                                                                                                        | 24.1%<br>39.1%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%                                                | 2.36 [0.22, 7.35]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]                                                                                                                                                                                | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =                                                                                                                                                                                                                                                               | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)                                                                                                                                                                                                                                                                   | 120<br>407<br>501<br>1391<br>*= 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>9<br>0<br>19<br>0); I² = 0%<br>PLD + Carbos<br>Events<br>0<br>0<br>0<br>4<br>1<br>0<br>5<br>7); I² = 41%                                                                    | pplatin<br>1309<br>1309<br>1309<br>1309<br>84<br>161<br>71<br>131<br>396<br>466<br>1309                                                                                                                  | Weight<br>100.0%<br>16.8%<br>16.8%<br>40.7%<br>25.9%<br>100.0%                                                        | Risk Ratio<br><b>Not</b> estimable<br><b>1.86 [1.06, 3.24]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br><b>12.28 [0.70, 214.63]</b><br><b>18.80 [1.11, 318.21]</b><br>Not estimable<br><b>1.54 [0.44, 5.31]</b><br><b>11.68 [1.53, 89.37]</b><br>Not estimable<br><b>5.59 [1.43, 21.84]</b>                                                                                                                                                    | 0.01 | 0.1 10 100<br>Favours PaclitaxeI+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                                     |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E                                                                                                                                                                                                                                                          | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)                                                                                                                                                                                                                                                             | 126<br>407<br>501<br>1391<br>*= 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>9<br>0<br>19<br>0); I² = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0<br>5<br>7); I² = 41%                                                                          | pplatin<br>1309<br>1309<br>1309<br>1309<br>84<br>161<br>71<br>131<br>396<br>466<br>1309                                                                                                                  | 24.1 %<br>39.1 %<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%                                              | Risk Ratio<br><b>Not</b> estimable<br><b>1.86 [1.06, 3.24]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br><b>12.28 [0.70, 214.63]</b><br><b>18.80 [1.11, 318.21]</b><br>Not estimable<br><b>1.54 [0.44, 5.31]</b><br><b>11.68 [1.53, 89.37]</b><br>Not estimable<br><b>5.59 [1.43, 21.84]</b>                                                                                                                                                    | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>N, Random, 95% Cl<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP                                                                                                        |
| Pignata 2011<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E                                                                                                                                                                                                                                          | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car                                                                                                                                                                                                                                               | 126<br>407<br>501<br>1391<br>i= 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $PLD + CarboEvents0041004107);  ^{2} = 41\%$                                                                                                                                     | 996<br>466<br>1309<br>1309<br>1309<br>1309<br>466<br>1309<br>1309                                                                                                                                        | 24.1 %<br>39.1 %<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%                                              | 2.58 [0.24, 2.63]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]<br>Risk Ratio                                                                                                                                                                         | 0.01 | 0.1 10 100<br>Favours PaclitaxeI+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Favours PaclitaxeI+CP Favours Doxorubicin+CP<br>Risk Ratio<br>Risk Ratio                                                                           |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Declaudes 2010                                                                                                                                                                                                                   | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df:<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events                                                                                                                                                                                                                              | 120<br>407<br>501<br>1391<br>Te 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>9<br>0<br>19<br>$0); I^2 = 0\%$<br>PLD + Carbo<br>0<br>0<br>4<br>1<br>0<br>0<br>4<br>1<br>0<br>0<br>4<br>1<br>0<br>0<br>$7$ ; $I^2 = 41\%$<br>PLD + Carbo<br>5<br>7         | pplatin<br>Total<br>1309<br>pplatin<br>Total<br>84<br>161<br>71<br>131<br>396<br>466<br>1309<br>pplatin<br>Total                                                                                         | 24.1 %<br>39.1 %<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight                                    | 2.58 [0.42, 2.63]<br>1.08 [0.42, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]<br>Risk Ratio<br>IV, Random, 95% CI                                                                                                                                                   | 0.01 | 0.1 10<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI                                                                       |
| Pignata 2011<br>Pignata 2011<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladief 2012                                                                                                                                                                                    | 10<br>0<br>0; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>6<br>12<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df <sup>-</sup><br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>2<br>9                                                                                                                                                                                                         | 120<br>407<br>501<br>1391<br>read (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total<br>89<br>139<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>139<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>9<br>0<br>19<br>0); I <sup>2</sup> = 0%<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0<br>4<br>1<br>0<br>7); I <sup>2</sup> = 41%<br>PLD + Carbo<br>Events<br>0<br>2     | pplatin<br>1309<br>pplatin<br>Total<br>84<br>1309<br>1309<br>1309<br>pplatin<br>1309<br>pplatin<br>84<br>466<br>1309<br>pplatin<br>84<br>466<br>1309                                                     | 24.1%<br>39.1%<br>100.0%<br>100.0%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight                                     | 1.08 [0.42, 2.63]<br>Not estimable<br><b>1.86 [1.06, 3.24]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br><b>12.28 [0.70, 214.63]</b><br><b>18.80 [1.11, 318.21]</b><br>Not estimable<br><b>1.54 [0.44, 5.31]</b><br><b>11.68 [1.53, 89.37]</b><br>Not estimable<br><b>5.59 [1.43, 21.84]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br>Not estimable<br><b>1.24 [0.23, 2.03]</b>                                                     | 0.01 | 0.1<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>Risk Ratio<br>IV, Random, 95% CI<br>IV, Random, 95% CI<br>IV, Random, 95% CI |
| Pignata 2011<br>Pignata 2011<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Pignata 2011                                                                                                                                                                   | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df <sup>2</sup><br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df <sup>2</sup><br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>0<br>3<br>1                                                                                     | rboplatin<br>1391<br>Total<br>1391<br>Total<br>1391<br>1391<br>1391<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total<br>89<br>1300<br>89<br>1301<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>139                                                                                          | $PLD + CarboEvents 0 0 4 1 0 0 4 1 0 7); I^{2} = 0\% PLD + Carbo 2 5 7); I^{2} = 41\% PLD + Carbo$                                                                               | oplatin<br>1309<br>1309<br>1309<br>1309<br>1309<br>1309<br>1309<br>1309                                                                                                                                  | 24.1 %<br>39.1 %<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight<br>53.8%                           | 1.08 [0.44, 2.63]<br>1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>Not estimable<br>1.34 [0.22, 7.93]<br>0.16 [0.02, 1.34]                                                                          | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>Risk Ratio<br>IV, Random, 95% CI                               |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Pujade-Lauraine 2010                                                                                                                                                                                           | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>0<br>3<br>1<br>0<br>3<br>1<br>0<br>0<br>3<br>1<br>0<br>0<br>3<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | rboplatin<br>1391<br>Total<br>1391<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>1391<br>= 3 (P = 0.4)<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1397<br>1391<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>1397<br>139                                                                                          | $^{4}$ 9<br>0<br>19<br>0); $P = 0\%$<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0<br>7); $P = 5$<br>7); $P = 41\%$<br>PLD + Carbo<br>Events<br>0<br>2<br>6<br>0             | oplatin<br>1309<br>1309<br>1309<br>1309<br>1309<br>131<br>396<br>466<br>1309<br>000<br>1309<br>000<br>1309<br>000<br>1309<br>000<br>1309<br>000<br>1309<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | 24.1%<br>39.1%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight<br>53.8%<br>46.2%                    | 1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>Not estimable<br>1.34 [0.23, 7.93]<br>0.16 [0.02, 1.34]<br>Not estimable                                                                              | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>Risk Ratio<br>IV, Random, 95% CI                               |
| Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Pignata 2011<br>Pujade-Lauraine 2010                                                                                                                                                         | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events<br>0<br>3<br>1<br>0                                                                                                                                                                                                                 | 120<br>407<br>501<br>1391<br>2 3 (P = 0.4<br>rboplatin<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total<br>89<br>180<br>407<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $PLD + CarboEvents 0 0 0); I^{2} = 0\% PLD + CarboEvents 0 0 4 1 0 7); I^{2} = 5 7); I^{2} = 41\% PLD + Carbo 2 6 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$                           | platin<br>396<br>466<br>1309<br>platin<br>71<br>131<br>396<br>466<br>1309<br>platin<br>Total<br>84<br>161<br>396<br>466<br>1309                                                                          | 24.1%<br>39.1%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight<br>53.8%<br>46.2%                    | 1.08 [0.44, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br><u>IV, Random, 95% CI</u><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]<br><u>Risk Ratio</u><br><u>IV, Random, 95% CI</u><br>Not estimable<br>1.34 [0.23, 7.93]<br>0.16 [0.02, 1.34]<br>Not estimable                                                                       | 0.01 | 0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                            |
| Pignata 2011<br>Pignata 2011<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Gladieff 2012<br>Pignata 2011<br>Pujade-Lauraine 2010                                                                | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events<br>0<br>34<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>0<br>3<br>1<br>0                                                                                                                          | 120<br>407<br>501<br>1391<br>*= 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total<br>89<br>180<br>407<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{r}                                     $                                                                                                                         | pplatin<br>Total<br>396<br>466<br>1309<br>pplatin<br>71<br>131<br>396<br>466<br>1309<br>pplatin<br>Total<br>396<br>466<br>1107                                                                           | 24.1%<br>39.1%<br>100.0%<br>100.0%<br>16.8%<br>16.8%<br>16.8%<br>16.8%<br>16.8%<br>100.0%<br>Weight<br>53.8%<br>46.2% | Risk Ratio<br>I.08 [0.42, 2.63]<br>Not estimable<br>1.86 [1.06, 3.24]<br>Risk Ratio<br>IV, Random, 95% CI<br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br>5.59 [1.43, 21.84]<br>Risk Ratio<br>IV, Random, 95% CI<br>Not estimable<br>1.34 [0.23, 7.93]<br>0.16 [0.02, 1.34]<br>Not estimable<br>0.51 [0.06, 3.99]                                                         | 0.01 | 0.1 10 100<br>Risk Ratio<br>N, Random, 95% Cl<br>0.1 10 100<br>Risk Ratio<br>N, Random, 95% Cl<br>0.1 10 100<br>Favours Paclitaxel+CP<br>Risk Ratio<br>N, Random, 95% Cl<br>0.1 10 100<br>Risk Ratio<br>N, Random, 95% Cl                                          |
| Pignata 2011<br>Pignata 2011<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Bafaloukos 2010<br>Gladieff 2012<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Gladieff 2012<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events                                                                  | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events<br>0<br>3<br>1<br>0<br>0<br>2<br>4<br>0                                                                                                                                                                                             | 120<br>407<br>501<br>1391<br>= 3 (P = 0.4<br>rboplatin<br>Total<br>89<br>180<br>86<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>rboplatin<br>Total<br>89<br>180<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>1391<br>= 130<br>1391<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>1301<br>= 130<br>= 130<br>= 100<br>= 10                                                                                                                                                                                                                                      | 4<br>9<br>0<br>19<br>0); $I^2 = 0\%$<br>PLD + Carbo<br>Events<br>0<br>0<br>4<br>1<br>0<br>7); $I^2 = 41\%$<br>PLD + Carbo<br>Events<br>0<br>2<br>6<br>0<br>2<br>6<br>0<br>2<br>8 | pplatin<br>Total<br>1309<br>pplatin<br>Total<br>84<br>161<br>71<br>131<br>396<br>466<br>1309<br>pplatin<br>Total<br>84<br>161<br>396<br>466<br>1309                                                      | 24.1%<br>39.1%<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight<br>53.8%<br>46.2%                    | 2.56 [0.22, 7.55]<br>1.08 [0.42, 2.63]<br>Not estimable<br><b>1.86 [1.06, 3.24]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br><b>5.59 [1.43, 21.84]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br>Not estimable<br>1.34 [0.23, 7.93]<br>0.16 [0.02, 1.34]<br>Not estimable<br><b>0.51 [0.06, 3.99]</b> | 0.01 | 0.1 10 100<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Risk Ratio<br>IV, Random, 95% CI<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>IV, Random, 95% CI<br>IV, Random, 95% CI                                           |
| Pignata 2011<br>Pignata 2011<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>D<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Kurtz 2011<br>Mahner 2014<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.<br>Test for overall effect: Z =<br>E<br>Study or Subgroup<br>Bafaloukos 2010<br>Gladieff 2012<br>Pignata 2011<br>Pujade-Lauraine 2010<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 1.<br>Test for overall affact = 1.<br>Test for overall affact = 1. | 10<br>0<br>38<br>00; Chi <sup>2</sup> = 2.94, df<br>= 2.18 (P = 0.03)<br>Paclitaxel + Car<br>Events<br>6<br>10<br>0<br>6<br>12<br>0<br>79; Chi <sup>2</sup> = 5.09, df<br>: 2.47 (P = 0.01)<br>Paclitaxel + Car<br>Events<br>0<br>3<br>1<br>0<br>4<br>24; Chi <sup>2</sup> = 2.25, df<br>0<br>4<br>24; Chi <sup>2</sup> = 2.25, df                                                                                                                            | 120<br>407<br>501<br>1391<br>1391<br>1391<br>1391<br>100<br>100<br>128<br>407<br>501<br>1391<br>= 3 (P = 0.1)<br>1391<br>= 3 (P = 0.1)<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1391<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1390<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>1300<br>10                                                                                        | $PLD + Carbo Events 0 0 7);  ^{2} = 0\%PLD + Carbo041077;  ^{2} = 41\%PLD + CarboEvents026033;  ^{2} = 56\%$                                                                     | pplatin<br>Total<br>1309<br>pplatin<br>Total<br>84<br>161<br>71<br>131<br>396<br>466<br>1309<br>pplatin<br>Total<br>84<br>160<br>1309<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00              | 24.1 %<br>39.1 %<br>100.0%<br>16.6%<br>16.8%<br>40.7%<br>25.9%<br>100.0%<br>Weight<br>53.8%<br>46.2%                  | 2.36 [0.22, 7.35]<br>1.08 [0.42, 2.63]<br>Not estimable<br><b>1.86 [1.06, 3.24]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br>12.28 [0.70, 214.63]<br>18.80 [1.11, 318.21]<br>Not estimable<br>1.54 [0.44, 5.31]<br>11.68 [1.53, 89.37]<br>Not estimable<br><b>5.59 [1.43, 21.84]</b><br><b>Risk Ratio</b><br><b>IV, Random, 95% CI</b><br>Not estimable<br>1.34 [0.23, 7.93]<br>0.16 [0.02, 1.34]<br>Not estimable<br><b>0.51 [0.06, 3.99]</b> | 0.01 | 0.1 10 100<br>Risk Ratio<br>V, Random, 95% CI<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>0.1 10 100<br>Favours Paclitaxel+CP Favours Doxorubicin+CP<br>Risk Ratio<br>V, Random, 95% CI<br>0.1 10 100                                         |

**Figure 8.** A, Forest plot showing the difference in nausea/vomiting incidence between paclitaxel and PLE combination therapy (n=5). **B**, Forest plot showing the difference in fatigue incidence between paclitaxel and PLE combination therapy (n=5). **C**, Forest plot showing the difference in allergy incidence between paclitaxel and PLE combination therapy (n=6). **D**, Forest plot showing the difference in neurotoxicity incidence between paclitaxel and PLE combination therapy. (n=6) **E**, Forest plot showing the difference in cardiotoxicity incidence between paclitaxel and PLE combination therapy. (n=6) **E**, Forest plot showing the difference in cardiotoxicity incidence between paclitaxel and PLE combination therapy. (n=4).

(both hematological and non-hematological). We tried to compile the best possible evidence available up to date to compare these medications.

In all, we identified 7 studies with 3,676 participants for our analysis. Out of these, five trials were part of larger multi-national RCTs conducted in 16 countries across the continents of Europe, North America, Australia, and Middle Eastern countries. Most of the studies in our review had low risk of bias<sup>7,16,17,19,20</sup>. We did not find any substantial heterogeneity among the reported outcomes in the studies. Hence, subgroup analysis or meta-regression was not performed to explore the source of heterogeneity. Main outcomes such as overall survival and progression free survival were found to be better for PLD combination therapy while other outcomes like disease progression rate, disease control rate, and overall response rate favoured the paclitaxel combination therapy. However, we did not find conclusive or significant evidence for any of these outcomes except progression free survival (favoured PLD combination therapy) as the confidence limit crossed the null value in all the other outcomes assessed. This shows that PLD combination therapy is superior to paclitaxel combination therapy in progression free survival while it is non-inferior to paclitaxel therapy in relation to other outcomes.

Mixed response was found in relation to the worst grade toxicity profile. Except leukopenia, all other hematological toxicities were higher among patients receiving PLD combination therapy. Similarly, non-hematological toxicities such as fatigue, nausea/vomiting, and cardiotoxicity were higher among patients receiving PLD combination therapy. However, none of these toxicities showed statistically significant evidence. While other toxicities like allergy and neurotoxicity were significantly higher among patients receiving paclitaxel combination therapy when compared to patients receiving PLD combination therapy. This again shows that PLD combination therapy is non-inferior to paclitaxel combination therapy in terms of toxicity profile (both hematological and non-hematological).

The major strengths of our study include the comprehensive search of literature and the broad search strategy to gather all the required publications up-to-date. Ours is the first review directly comparing the prognosis (survival) outcomes and toxicity profile between PLD and paclitaxel combination therapy for the management of ovarian cancer patients. A network meta-analysis conducted by Jiang et al<sup>22</sup> compared only three studies and had limited number of outcomes assessed. Important outcomes such as overall survival and progression free survival were analysed in our review to provide conclusive evidence on efficacy of PLD combination therapy over paclitaxel combination therapy. We only included RCTs into our review which enables us to infer causal associations between the intervention and outcomes.

We are also aware of the limitations in our review. We included only 7 RCTs in our review. Hence, more RCTs with larger sample size should be done to gather more evidence. We could not assess for publication bias as the number of studies included in the review was less than 10 (minimum requirement to perform funnel plot or Egger's test). Finally, most of the studies included in our review were conducted in high income countries, which may limit the generalizability of our findings to other geographical regions.

Our study has certain implications towards clinical practice. We found that PLD combination therapy is non-inferior to the paclitaxel combination treatment in the management of ovarian cancer patients. Till now, paclitaxel combination therapy is widely used as first line chemotherapeutic agent to manage high grade ovarian cancer. Previous evidence has shown that paclitaxel combination therapy has potential adverse effects on the central nervous system of the patients causing residual neurotoxicity following the first line treatment<sup>16,18</sup>. It is known to negatively influence the quality of life of patients because of the cumulative toxicities.

With the current evidence, clinicians can use PLD combination therapy in place of paclitaxel as a reasonable alternative depending on the patient profile (i.e., if the patients are at high risk of neurotoxicity or allergy) or it can be used as an alternative if the patients on paclitaxel develop such side effects. However, uncertainties regarding efficacy and safety persist as some of the studies have inadequate sample size which limits the power of the studies. Apart from efficacy and safety concerns, questions related to dose response relationship to determine the optimal dose and schedule for treatment require further exploration. To develop conclusive evidence on these factors, more robust RCTs or prospective studies with larger sample size are needed to strengthen the evidence for recommendations on how to best treat ovarian cancer patients using standard chemotherapeutic regimens.

## Conclusions

In summary, PLD combination therapy is non-inferior to paclitaxel combination therapy in the management of ovarian cancer with respect to survival outcomes and worst grade toxicity profile. However, more robust RCTs with large sample size are required to derive conclusive evidence towards efficacy, safety, and dose response relationship of PLD and paclitaxel combination chemotherapy.

#### **Conflict of Interest**

The Authors declare that they have no conflict of interests.

#### Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

#### Authors' Contribution

SS and FJ designed the paper. TH, YZ, LC, and XH were involved in literature search and data interpreted. SS, FJ, and TH were responsible for the data analysis. SS and FJ prepared the manuscript. All authors have read and approved the final manuscript.

#### References

- 1) Global Cancer Observatory 2018. International Agency for Research on Cancer.
- NATIONAL COLLABORATING CENTRE FOR CANCER (UK). Ovarian cancer: the recognition and initial management of ovarian cancer. Cardiff (UK): National Collaborating Centre for Cancer (UK); 2011
- Cancer Survival Among Adults US SEER Program, 1988-2001 - SEER Publications. SEER.
- 4) SANT M, ALLEMANI C, SANTAQUILANI M, KNIJN A, MARCHESI F, CAPOCACCIA R; EUROCARE WORKING GROUP. EUROCARE-4. Survival of cancer patients diagnosed in 1995-1999. Results and commentary. Eur J Cancer 2009; 45: 931-991.
- 5) OVERVIEW I Guidance on the use of paclitaxel in the treatment of ovarian cancer I Guidance I NICE.
- 6) DU BOIS A, LÜCK HJ, MEIER W, ADAMS HP, MÖBUS V, COSTA S, BAUKNECHT T, RICHTER B, WARM M, SCHRÖDER W, OLBRICHT S, NITZ U, JACKISCH C, EMONS G, WAGNER U, KUHN W, PFISTERER J; ARBEITSGEMEINSCHAFT GYNÄKOL-OGISCHE ONKOLOGIE OVARIAN CANCER STUDY GROUP. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 2003; 95: 1320-1329.

- 7) PUJADE-LAURAINE E, WAGNER U, AAVALL-LUNDOVIST E, GEBSKI V, HEYWOOD M, VASEY PA, VOLGGER B, VERGOTE I, PIGNATA S, FERRERO A, SEHOULI J, LORTHOLARY A, KRIS-TENSEN G, JACKISCH C, JOLY F, BROWN C, LE FUR N, DU BOIS A. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol 2010; 28: 3323-3329.
- 8) SOUHAMI RL: Oxford Textbook of Oncology. Oxford University Press, 2002.
- GABIZON A, MARTIN F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997; 4: 15-21.
- GABIZON AA. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 2001; 7: 223-225.
- WATERHOUSE DN, TARDI PG, MAYER LD, BALLY MB. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 2001; 24: 903-920.
- 12) LIBERATI A, ALTMAN DG, TETZLAFF J, MULROW C, GØTZSCHE PC, IOANNIDIS JP, CLARKE M, DEVEREAUX PJ, KLEJINEN J, MOHER D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100.
- HIGGINS JP, GREEN S. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series. 674.
- 14) PARMAR MK, TORRI V, STEWART L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med 1998; 17: 2815-2834.
- 15) RAO G, LOPEZ-JIMENEZ F, BOYD J, D'AMICO F, DURANT NH, HLATKY MA, HOWARD G, KIRLEY K, MASI C, POW-ELL-WILEY TM, SOLOMONIDES AE, WEST CP, WESSEL J; AMERICAN HEART ASSOCIATION COUNCIL ON LIFESTYLE AND CARDIOMETABOLIC HEALTH; COUNCIL ON CARDIOVASCU-LAR AND STROKE NURSING; COUNCIL ON CARDIOVASCULAR SURGERY AND ANESTHESIA; COUNCIL ON CLINICAL CARDI-OLOGY; COUNCIL ON FUNCTIONAL GENOMICS AND TRANS-LATIONAL BIOLOGY; AND STROKE COUNCIL. Methodological standards for meta-analyses and qualitative systematic reviews of cardiac prevention and treatment studies: a scientific statement from the American Heart Association. Circulation 2017; 136: e172-94.
- 16) BAFALOUKOS D, LINARDOU H, ARAVANTINOS G, PAPAD-IMITRIOU C, BAMIAS A, FOUNTZILAS G, KALOFONOS HP, KOSMIDIS P, TIMOTHEADOU E, MAKATSORIS T, SAMANTAS E, BRIASOULIS E, CHRISTODOULOU C, PAPAKOSTAS P, PEC-TASIDES D, DIMOPOULOS AM. A randomized phase II study of carboplatin plus pegylated liposomal doxorubicin versus carboplatin plus paclitaxel in platinum sensitive ovarian cancer patients: a Hellenic Cooperative Oncology Group study. BMC Med 2010; 8: 3.
- 17) GLADIEFF L, FERRERO A, DE RAUGLAUDRE G, BROWN C, VASEY P, REINTHALLER A, PUJADE-LAURAINE E, REED N,

LORUSSO D, SIENA S, HELLAND H, ELIT L, MAHNER S. Carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in partially platinum-sensitive ovarian cancer patients: results from a subset analysis of the CALYPSO phase III trial. Ann Oncol 2012; 23: 1185-1189.

- 18) KURTZ JE, KAMINSKY MC, FLOQUET A, VEILLARD AS, KIM-MIG R, DORUM A, ELIT L, BUCK M, PETRU E, REED N, SCAMBIA G, VARSELLONA N, BROWN C, PUJADE-LAURA-INE E; GYNECOLOGIC CANCER INTERGROUP. Ovarian cancer in elderly patients: carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in late relapse: a Gynecologic Cancer Intergroup (GCIG) CALYPSO sub-study. Ann Oncol 2011; 22: 2417-2423.
- 19) MAHNER S, MEIER W, DU BOIS A, BROWN C, LORUSSO D, DELL'ANNA T, CRETIN J, HAVSTEEN H, BESSETTE P, ZEIMET AG, VERGOTE I, VASEY P, PUJADE-LAURAINE E, GLADIEFF L, FERRERO A. Carboplatin and pegylated liposomal doxorubicin versus carboplatin and paclitaxel in very platinum-sensitive ovarian cancer patients: results from a subset analysis of the CALYPSO phase III trial. Eur J Cancer 2015; 51: 352-358.
- 20) PIGNATA S, SCAMBIA G, FERRANDINA G, SAVARESE A, SORIO R, BREDA E, GEBBIA V, MUSSO P, FRIGERIO L, DEL MED-ICO P, LOMBARDI AV, FEBBRARO A, SCOLLO P, FERRO A, TAMBERI S, BRANDES A, RAVAIOLI A, VALERIO MR, AITINI E, NATALE D, SCALTRITI L, GREGGI S, PISANO C, LORUSSO D, SALUTARI V, LEGGE F, DI MAIO M, MORABITO A, GAL-LO C, PERRONE F. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol 2011; 29: 3628-3635.
- 21) WAGNER U, MARTH C, LARGILLIER R, KAERN J, BROWN C, HEYWOOD M, BONAVENTURA T, VERGOTE I, PICCIRILLO MC, FOSSATI R, GEBSKI V, LAURAINE EP. Final overall survival results of phase III GCIG CALYPSO trial of pegylated liposomal doxorubicin and carboplatin vs paclitaxel and carboplatin in platinum-sensitive ovarian cancer patients. Br J Cancer 2012; 107: 588-591.
- 22) JIANG XP, RUI XH, GUO CX, HUANG YQ, LI Q, XU Y. A network meta-analysis of eight chemotherapy regimens for treatment of advanced ovarian cancer. Oncotarget 2017; 8: 19125-19136.