
Abstract. – AIM: Skeletal muscle transcrip-
tome of patients with sepsis was compared
with that of controls to elucidate the molecular
mechanisms underlying sepsis-induced skele-
tal muscle dysfunction.

MATERIALS AND METHODS: Gene expression
data set GSE13205 was downloaded from Gene
Expression Omnibus (GEO), including 13 septic
samples and 8 controls. Differentially expressed
genes (DEGs) were screened out with t-test. Tran-
scriptional regulatory network was constructed
for the DEGs with information from UCSU. In or-
der to identify altered biological functions in sep-
sis, pathway enrichment analysis was conducted
for all the genes in the network with DAVID. Be-
sides, relevant small molecules were retrieved us-
ing the Connectivity Map (camp).

RESULTS: A total of 287 DEGs were obtained
in sepsis, 149 up-regulated and 138 down-regu-
lated. A transcriptional regulatory network con-
taining 83 nodes and 98 edges was then con-
structed. Five transcription factors (TFs) and
their target genes were acquired. Significantly
altered biological pathways included insulin
signaling pathway, neurotrophin signaling path-
way, fructose and mannose metabolism, circa-
dian rhythm and apoptosis. Besides, a number
of relevant molecules were obtained, such as
trazodone and thapsigargin.

CONCLUSIONS: Our study provided an in-
sight into the molecular changes sepsis and re-
lated skeletal muscle dysfunction. The informa-
tion could be beneficial in disclosing the patho-
genesis and developing effective therapies.
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kB; AP-1 = Activator protein-1; RMA = Robust Multi-ar-
ray Average; NCBJ Entrez = National Center for
Biotechnology Information – Global Query cross Data-
bases Search System; LIMMA = Linear Models for Mi-
croarray Data; KEGG = Kyoto Encyclopedia of Genes
and Genomes; Mic = Myelocytomatosis viral oncogene;
CBFB = Cote binding factor, beta subunit; FOX01 =
Forkhead box 01; NFIL3 = Nuclear factor, interleukin 3;
TGIF1 = TGFB-induced factor homeobox 1; PI3K =
Phosphoinositide 3-kinase; Akt = Protein kinase B
(PKB); IRS1 = insulin receptor substrate1; IRAK1 = in-
terleukin-1 receptor-associated kinase 1; Toll/IL-1 =
Toll-interleukin-1 receptor: B cl 2 = B-cell lymphoma2;
PPAR-β/δ: Peroxisome-proliferator-activated receptor
β/δ; LPS: Lipopolysaccharide.

Introduction

Sepsis is a medical condition featured by a
whole-body inflammatory state (called a sys-
temic inflammatory response syndrome or SIRS)
caused by severe infection1. It leads to millions
of deaths globally each year2 and ranks in the top
10 causes of death3.

Accelerated proteolysis of muscle is character-
istic in patients with sepsis. Researchers have
found that ubiquitin-proteasome pathway involves
in the muscle proteolysis4,5. The gene expression
of multiple ubiquitin ligases are up-regulated in
skeletal muscle6. Williams et al7 indicate that sep-
sis stimulates release of myofilaments in skeletal
muscle by a calcium-dependent mechanism. Mito-
chondrial dysfunction also contributes to the mus-
cle impairment as well as organ failure8. Besides,
Penner et al9 report that transcription factors nu-
clear factor-κB (NF-κB) and AP-1 are differential-
ly regulated in skeletal muscle during sepsis.

Considering the complicated pathogenesis of
sepsis, microarray technology enables global ex-
plorations of the molecular changes. The study by
Prucha et al10 present that microarrays can identi-
fy typical gene expression profiles in the blood of
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patients with severe sepsis. Tang et al11 investigate
gene-expression profiles of peripheral blood
mononuclear cells in sepsis and find characteristic
transcriptional changes that can be used to aid the
diagnosis of this disease. Howrylak et al12 explore
the gene signature for acute lung injury in patients
with sepsis using microarray technology.

In order to advance the understandings about
the molecular mechanisms of sepsis and subse-
quent muscle dysfunction, transcriptome of
skeletal muscle from patients with sepsis was
compared with that of controls to identify differ-
entially expressed genes (DEGs), which were
further analyzed with bioinformatic tools.

Materials and Methods

Microarray data
Gene expression data set GSE1320513 was

downloaded from Gene Expression Omnibus
(GEO)14. It contained 13 septic samples and 8
controls. Expression profiles were obtained using
GPL570 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array. Annotation files
were collected with raw data.

Screening of DEGs
Raw data were normalized using R with Ro-

bust Multi-array Average (RMA) method15 from
package Affy. Then probes were mapped to
NCBI Entrez. For probes corresponding to a
same entrez gene ID, average expression level
was calculated as the final number. The probe
mapping to more than one gene was removed.

Differential analysis between sepsis and con-
trol was performed with using t-test using pack-
age LIMMA16. p value < 0.05 and |logFC|>1.5
were set as the cut-offs to filter out differentially
expressed genes (DEGs).

Construction of transcriptional
regulatory network

Transcriptional regulatory information was ac-
quired from UCSU (http://genome.ucsc.edu)17-18.
A total of 215 TFs and 214607 target genes were
included. Then DEGs were mapped into the
whole network and the corresponding network
were visualized with Cytoscape19.

Pathway enrichment analysis
Pathway information came from KEGG Path-

way Database20. Fisher exact test21 provided by
DAVID22 was chosen for the pathway enrich-
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ment analysis to identify altered biological func-
tions during sepsis. The contingency table for
Fisher exact test was shown in Table I. p value
was calculated for each term with the following
algorithm:

a + b c + d( a ) ( c ) (a+b)! (c+d)! (a+c)! (b+d)!
p = ––––––––––––– = –––––––––––––––––––––

n a! b! c! d! n!(a + c)
Retrieval of relevant small molecules

Relevant small molecules were retrieved with
the Connectivity Map (cmap)23-24, which is a col-
lection of genome-wide transcriptional expres-
sion data from cultured human cells treated with
bioactive small molecules. It now contains more
than 7056 expression profiles representing 1309
compounds.

The DEGs were divided into up- and down-
regulated genes and then mapped to the probes in
HG-U133A. The gene-expression changes in sep-
sis were compared with cmap database and rele-
vant small molecules were acquired according to
the enrichment scores.

Results

Differentially expressed genes
According to the criteria (p value < 0.05 and

|logFC| >1.5), a total of 287 DEGs were obtained
for sepsis, 149 up-regulated and 138 down-regulat-
ed. Details were listed in Supplementary Table I.

Transcriptional regulatory network
analysis results

A transcriptional regulatory network contain-
ing 83 nodes and 98 edgeswas constructed for the
DEGs (Figure 1). Five TFs were included in the
network: MYC, CBFB, FOXO1, NFIL3 and
TGIF1. The numbers of target genes were 37, 25,
16, 15 and 6, respectively.

Altered biological pathways in sepsis
Pathway enrichment analysis was performed

for all the genes in the network. Terms with at
least two genes were retained. The top 10 terms
were listed in Figure 2. Significantly altered
pathways included insulin signaling pathway,
neurotrophin signaling pathway, fructose and
mannose metabolism, circadian rhythm and
apoptosis.
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Table II. Trazodone (enrichment = –0.93), bezafi-
brate (enrichment = –0.842) and morantel (enrich-
ment = –0.812) had negative scores, suggesting
they could be potential medicines for sepsis. On
the contrary, thapsigargin, podophyllotoxin and
hexetidine might simulate physical conditions like
sepsis or cause the incidence of sepsis. The results
provided clues for future drug development.

Discussion

Through a comparative analysis of skeletal
muscle transcriptome between septic patients

Relevant small molecules
In order to collect information for treatment of

sepsis, relevant small molecules were retrieved us-
ing cmap. Top 20 small molecules were listed in

DEGs No DEGs Total

In Term M (a) y-m (b) y
Not In Term M-m (c) Y-M–y+m (d) Y-y
Total M Y-M Y (n = a+b+c+d)

Table I. The contingency table for Fisher exact test.

Y: number of total genes; M: number of DEGs; y: number
of genes in a pathway; m: number of DEGs in a pathway.

Figure 1. Transcriptional regulatory network for DEGs in the sepsis. Diamonds represent TFs and circles for target genes.
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and controls, a range of DEGs were identified
for sepsis. To further find out key players in the
sepsis-induced muscle dysfunction, transcrip-
tional regulatory network analysis was per-
formed, followed by pathway enrichment analy-
sis, which revealed some interesting and charac-
teristic changes in this disease.

Insulin signaling pathway was the most sig-
nificantly disturbed pathway. The anabolic ef-
fect of insulin in skeletal muscle reflects in-
creased protein synthesis and reduced protein
degradation25. It has been recognized that in-
sulin resistance and hyperglycemia are very
common in septic patients26. Wang et al27 find
that insulin resistance causes muscle wasting
by mechanisms that involve suppression of
PI3K/Akt signaling leading to activation of cas-
pase-3 and the ubiquitin-proteasome proteolytic
pathway causing muscle protein degradation.
Sepsis poses a great impact on the metabolism
of muscle via insulin. Insulin therapy is applied
for patients with severe sepsis, but its role re-
mains uncertain28. Griesdale et al29 carry out a
meta-analysis and report that intensive insulin
therapy significantly increase the risk of hypo-
glycemia and confer no overall mortality bene-
fit among critically ill patients. Therefore, de-
tailed characterization of the molecular mecha-
nisms holds important clues to modulate the
physiological process. Forkhead box O1
(FOXO1) belongs to the forkhead family of
transcription factors which are characterized by
a distinct forkhead domain. Akt/FOXO signal-

ing participates in both protein loss and the im-
pairment of muscle carbohydrate oxidation dur-
ing sepsis30. Smith et al31 indicate that sepsis in-
creases the expression and activity of FOXO1
in skeletal muscle by a glucocorticoid-depen-
dent mechanism. Recently published study by
Castillero et al32 reports that PPARβ/δ regulates
FOXO1 activation in glucocorticoid- and sep-
sis-induced muscle wasting and that treatment
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Figure 2. Top 10 pathways enriched in all the genes from the network.

Enrichment
cmap name score p value

Podophyllotoxin 0.945 0
Monensin 0.922 0
Fludrocortisone 0.754 0
LY-294002 ¬–0.379 0
Hexetidine 0.935 2.00E-05
Thapsigargin 0.97 4.00E-05
Tolnaftate 0.857 1.20E-04
15-delta prostaglandin J2 0.538 2.00E-04
Trazodone –0.93 5.20E-04
Morantel –0.812 5.60E-04
Atracurium besilate 0.925 8.00E-04
Naringenin 0.844 8.80E-04
Bezafibrate –0.842 1.13E-03
Heptaminol 0.779 1.16E-03
Chlorhexidine 0.777 1.20E-03
Calcium folinate 0.768 1.50E-03
Pentoxifylline 0.759 1.94E-03
Heliotrine –0.688 2.20E-03
Procaine –0.742 2.24E-03
Amitriptyline 0.687 2.42E-03

Table II. Top 20 small molecules retrieved from cmap.



with a PPARβ/δ inhibitor may ameliorate loss
of muscle mass in these conditions. A number
of genes were transcriptionally regulated by
FOXO1, and some of them were also differen-
tially expressed in sepsis. Insulin receptor sub-
strate 1 (IRS1) is a protein which is phosphory-
lated by insulin receptor tyrosine kinase. Its
downregulation in sepsis might contribute to
the insulin resistance. Carvalho-Filho et al33 re-
port that aspirin attenuates insulin resistance in
muscle of diet-induced obese rats by inhibiting
inducible nitric oxide synthase production and
S-nitrosylation of IRβ/IRS-1 and Akt. Further
investigation on the target genes of FOXO1
might bring in new findings.

Neurotrophin signaling pathway was the sec-
ond pathway affected by sepsis. Neurotrophins
are a family of growth factors that are polypep-
tide in structure and are necessary for the de-
velopment and maintenance of the vertebrate
nervous system. The involvement of this path-
way in sepsis is associated with inflammation
and apoptosis. Interleukin-1 receptor-associated
kinase 1 (IRAK1) participates in the IL1-in-
duced up-regulation of NFκB. Arcaroli et al.
report that variant IRAK-1 haplotype is associ-
ated with increased NFκB activation and worse
outcomes in sepsis34. It also mediates LPS-in-
duced myocardial contractile dysfunction.
Thomas et al35 find that IRAK1 deletion dis-
rupts cardiac Toll/IL-1 signaling and protects
against contracti le dysfunction. B-cell
CLL/lymphoma 2 (BCL2) is an integral outer
mitochondrial membrane protein that blocks
the apoptotic death of some cells. Its downreg-
ulation may contribute to the death of patient
with severe sepsis36. Hotchkiss et al37 report
that overexpression of Bcl-2 in transgenic mice
decreases apoptosis and improves survival in
sepsis. Therefore, it might be a good target to
improve the outcomes of septic patients.

In addition to the above two pathways, fruc-
tose and mannose metabolism, apoptosis and
arachidonic acid metabolism were also signifi-
cantly over-represented in DEGs. They might be
good directions to investigate the developmental
mechanisms of sepsis-induced skeletal muscle
dysfunction.

Moreover, relevant small molecules were re-
trieved from camp. The search is based upon
the global match of gene expression profiles
and, thus, the results are really suggestive.
Negative enrichment score means the small
molecule may reverse the effect of sepsis on

transcriptome. Oppositely, positive score sug-
gests it may generate a status like sepsis. These
results might offer hints to disclose the molec-
ular mechanisms of sepsis. Thapsigargin was
of the most positive score. It’s a tumor-promot-
ing sesquiterpene lactone and discharges intra-
cellular Ca2+ in rat hepatocytes38. This was par-
tially in accordance with the calcium disorder
in sepsis39.

Conclusions

Overall, our study offered insights into the mol-
ecular mechanisms of sepsis and related skeletal
muscle dysfunction. Some DEGs might be targets
to modulate the progression of this disease and
thus were worthy of further investigations.
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