
Abstract. – OBJECTIVE: Ovarian cancer is the
most lethal gynecologic cancer worldwide, since
most patients are diagnosed at an advanced
stage. To improve the early diagnosis and treat-
ment of ovarian cancer, we performed a integrat-
ed analysis of transcription profile and genetic
variations to study on the molecular pathogene-
sis in ovarian cancer.

METHODS: mRNA expression profiles of ovar-
ian cancer and normal controls downloaded
from ArrayExpress database were applied to
identify differentially expressed genes (DEGs).
The chromosomal distributions of these DEGs
were established using DAVID. Then, DNASeq
data from the Cancer Genome Atlas (TCGA)
were extracted to analyze gene mutational infor-
mation including the number of mutations (mut),
the number of mutational genes (mutG) and
chromosomal distributions of mutations. Statis-
tical method was offered to carrying on correla-
tion analysis of gene mutations and differential
expression.

RESULTS: A total of 1732 DEGs were identi-
fied, and the chromosomal distributions of 97
genes were unknown. These DEGs were most
significantly distributed on chromosome 4 with
p value = 1.34E-7. Chromosome 1 enriched the
most DEGs (11.56%). Statistical algorithm
showed that DEGs presented significantly posi-
tive correlation with mut (p = 0.000009) and
mutG (p = 0.00001). In 48.7% DEGs, gene muta-
tions were found.

CONCLUSIONS: We conducted scientific
analysis on integration of DEGs in expression
profiles and genetic mutations in ovarian cancer,
displayed the correlation of differential expres-
sion and genetic variations. The result indicated
that expression profiles were significantly corre-
lated to genotype.
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Introduction

Ovarian cancer is the second most common
gynecologic cancer, however, with mortality at
the top1 because of a typically late detection
and laggard therapeutic strategies2. It was esti-
mated that nearly 21,980 new cases would be
diagnosed and 14,270 would die from ovarian
cancer in the United States alone in 20141.
Based on symptoms and effective screening
programs, other gynecologic cancers such as
cervical cancer and endometrial cancer could
usually be diagnosed in the early stage3. Unfor-
tunately, the vast majority of ovarian cancer pa-
tients present with an advanced stage because
of the lack of specific symptoms and reliable
biomarkers3, and the 5-year survival is less than
30%4. Clearly, ovarian cancer presents a chal-
lenge which is making correct detection as ear-
ly as possible. A better understanding of the
molecular pathogenesis associated with ovarian
cancer is greatly needed, so that available bio-
markers and drug targets which are helpful to
early diagnosis should be identified.
Like other cancers, hereditary factors are sus-

pected to cause ovarian cancer. Several evidences
show that genetic events play an important role
in some ovarian cancer women5-9. It was
reported7,8,10,11 that ovarian cancer could be in-
duced by mutations in specific genes, such as
breast cancer susceptibility gene (BRCA), in-
cluding BRCA1 and BRCA2, which were sus-
ceptive to breast and ovarian cancer. Harmful
mutations in either of these two genes conferred
a woman lifetime risk of ovarian cancer from
15% to 40%7. Lakhani et al12 also demonstrated
the connection between BRCA and ovarian can-
cer that BRCA gene accounted for 5%-13% of
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ovarian cancers and Ashkenazi Jewish women
were proven to suffer ovarian cancer at an earlier
age with a higher risk13. A integrated analysis of
489 high-grade serous adenocarcinomas demon-
strated that TP53 was mutated in almost all cases
(96%), and other 9 genes including NF1, BR-
CA1, BRCA2, RB1 and CDK12 were commonly
mutated14. KRAS-variant was considered as a
new genetic marker of cancer risk for ovarian
cancer15.
Next generation DNA sequencing technology

(DNASeq) which greatly influences clinical re-
searches is rapidly developed in recent years.
Compared to microarray data, DNASeq can be
used to generate genome-wide genetic data with
less signal noises16. DNASeq technology has
been applied for unprecedented discovery in vari-
ous types of cancer, including breast cancer17,
acute myeloid leukemia18 and non-small cell lung
cancer19. Bioinformatics approach provides new
perspectives to study the pathogenesis and thera-
py of cancer. ArrayExpress Archive is a public
database of microarray gene expression data,
which is designed to hold data from microarray
platforms20. The Cancer Genome Atlas (TCGA)
database (http://cancergenome.nih.gov/) is a inte-
grative and multidisciplinary project where dif-
ferent diseases are categorized using a variety of
genome-wide platforms21, included DNASeq da-
ta. Previous studies have offered amount of pre-
liminary data on gene expression profiles in Ar-
rayExpress Archive and DNASeq data such as
single nucleotide polymorphism (SNP) of ovari-
an cancer in TCGA22-25. Although these studies
have provided some useful insights, systematical-
ly integrative analysis comparing gene differen-
tial expressions and genetic variations is greatly
needed, which offers potential for identifying
novel and specific biomarkers for the early detec-
tion of cancer.
Many scientists believe that high-grade serous

ovarian cancer, the most common type of ovarian
cancer, is a fallopian tube malignancy disguising
as an ovarian one26-30. Now, scientists have pre-
sented the model of this cancer that proves the
hypothesis powerfully and facilitates the devel-
opment of better treatments for cancer30,31.
Women with strong genetic risk for ovarian can-
cer may consider the use of prophylactic salpin-
go-oophorectomy, since they also have an in-
creased risk of fallopian tube cancer32.
In the present study, to examine the role of ge-

netic factors in ovarian cancer development, we
attempted to correlate genetic alterations with the

gene expression profile. An integrated approach
was applied to identify statistically significant
genes associated with ovarian and fallopian tube
cancer using microarray data and patient
matched data from ArrayExpress and TCGA. We
first identified the differentially expressed genes
(DEGs) between tumor samples and normal con-
trols based on the expression level, then validated
the chromosomal distributions of these DEGs us-
ing DAVID (http://david.abcc.ncifcrf.gov/). The
genetic variations were downloaded from TCGA
database to proceed correlation analysis between
DEGs and genetic mutations. This study revealed
the relevance of genetic mutations and differen-
tial expression, which provided information for
understanding the molecular pathogenesis of
ovarian and fallopian tube cancer.

Methods

Data Collection and Identification of DEGs
The microarray expression profiles of fal-

lopian tube and ovarian cancer and normal
control were downloaded from ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/), a publicly
available repository, with access number of E-
GEOD-1097123, E-GEOD-1400124, E-GEOD-
1852025 and E-GEOD-2765133. For each gene
expression dataset, the original expression in-
formation from all conditions were pre-
processed into expression estimates by RMA
method in Bioconductor. Each probe was
mapped to one gene, where the probes were
discarded if they could not match any genes.
The value averaged over probes was selected if
the gene had multiple probes. RankProd pack-
age is a powerful meta analysis tool to detect
DEGs by integrating multiple microarray
data34, which is developed from the rank prod-
uct method35. We provided the RankProd pack-
age to identify the DEGs between patients and
control by combining these multiple experi-
ments. The up-and down-regulated DEGs were
identified by assimilating a set of gene-specific
t tests. Genes with a percentage of false-posi-
tives (pfp) < 0.01 and |log2FC| > 2 were consid-
ered as DEGs between patients and controls.

Chromosomal Distributions of DEGs
In order to ascertain the chromosomal distribu-

tions of the DEGs identified by RankProd, we
performed chromosomes enrichment analysis us-
ing Functional Annotation Chart module in
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Chromosome Count % p value Genes

1 189 11.6 0.001852* S100A4, STIL, RNASEL, PTGS2…
2 121 7.4 0.087593 LYPD1, LTBP1, ZAK, DYNC2LI1…
3 98 6.0 0.058346 NCBP2, RARRES1, PLXNA1, RBM6…
4 110 6.7 1.34E-07* FAM200B, GNPDA2, SGMS2, PDLIM5…
5 81 5.0 0.157247 MEF2C, FGF18, SNCAIP, IL6ST…
6 104 6.4 0.596139 TUBB2A, TTK, ANKRD6, DSE…
7 71 4.3 0.98725 STK31, CLDN4, CLDN3, EZH2…
8 74 4.5 0.06419 DLC1, CTHRC1, TUSC3, PNMA2…
9 68 4.2 0.568477 CTNNAL1, C9ORF72, ALAD, CDC14B…
10 68 4.2 0.268881 ZCCHC24, BTRC, PWWP2B, PRKG1…
11 77 4.7 0.962824 MPZL2, TSPAN4, IL18, E2F8…
12 97 5.9 0.014105* SYT1, LMO3, C12ORF73, NELL2 …
13 39 2.4 0.151873 CAB39L, WASF3, DZIP1, CLDN10…
14 56 3.4 0.924428 SGPP1, ATL1, FLJ39632, JAG2…
15 64 3.9 0.079959 C15ORF48, AQP9, PRC1, CRABP1…
16 35 2.1 0.999989 BCLAF1, HSD17B2, C16ORF72, PHKB…
17 74 4.5 0.870948 HLF, CLDN7, COX11, PRR11…
18 37 2.3 0.04189* ZNF516, VAPA, SYT4, TYMS…
19 54 3.3 0.999992 SLC44A2, RFXANK, LSR, CCNE1…
20 36 2.2 0.793087 TMX4, CTCFL, AURKA, NECAB3…
21 20 1.2 0.655431 ADARB1, SYNJ1, CHODL, CYYR1…
22 24 1.5 0.998606 TRIOBP, PRAME, SELM, SLC5A1…
X 67 4.1 0.910104 ZMAT1, KDM6A, NAP1L3, FGF13…

Table I. Chromosomal distributions of differentially expressed genes in expression profiles.

*p value < 0.05.

Correlation of transcriptome and genome in ovarian cancer
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Correlation Analysis of DEGs and
Genetic Variations
By analysis of the DNASeq data, we could

gain the number of mutations (mut), the number
of mutational genes (mutG), the ratio of total mu-
tations to total genes (Amut/G) the percent of
mut in total gene (Pmut), the number of genes in
chromosomes (Gene) and chromosomal distribu-
tions of genetic mutations. Spearman correlation
test36 was used to analyze the correlation between
the DEGs and mutational information with p val-
ue < 0.01 considered as significant correlation.

Results

Identification of DEGs
A total of 1732 genes that were consistently

differentially expressed in tubal and ovarian can-
cer across studies were identified. Among the
1732 DEGs, 580 genes were up-regulated and
1152 genes were down-regulated.

Chromosomal Distributions of DEGs
By the functional annotation chart analysis in

DAVID, the chromosomal distributions of a total
of 1664 DEGs were identified (Table I), excepted
for the other 68 DEGs which were unknown

DAVID (http://david.abcc.ncifcrf.gov/). The sig-
nificant enrichments were identified by EASE
score with the correction of false discovery rate
(FDR). The threshold of EASE score was less
than 0.05.

Analysis of DNASeq Data
TCGA database (http://cancergenome.nih.gov/)

is a central bank which provides multiple experi-
mental data of more than 20 different types of
human cancer, including DNA changes of ovari-
an cancer. To study the connection and difference
between DEGs identified by microarray analysis
and gene variations in TCGA, DNASeq data of
ovarian cancer were downloaded and analyzed.
In this study, level 2 data were used to identify
somatic mutations, including single-nucleotide
polymorphism (SNP), base deletion and inser-
tion. Whole-genome sequencing was done with
the Illumina HiSeq sequencer. Reads were
aligned to the reference human genome build
hg19. Somatic mutations obtained by WUSM
mutation calling model were selected for our
study. A total of 9 valid batches with 460 samples
(230 tumors and 230 normals) were extracted.
Then the genetic variational information was ob-
tained for further analysis.
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genes. These genes were significantly distributed
on four chromosomes including chromosome 1,
4, 12 and 18. Thereinto, chromosome 4 had the
most significant distribution with p value =
1.34E-7, followed by chromosome 1 (p = 1.85E-
3) and chromosome 12 (p = 0.014). In terms of
count, chromosome 1 enriched the most DEGs
(11.6%), followed by chromosome 2 (7.4%) and
chromosome 4 (6.7%).

Correlation Analysis of DEGs and
Genetic Variations
The TCGA ovarian cancer data set consisted of

230 tumors and 230 normals with genetic varia-
tion data were obtained. The DEGs and genetic
mutational information of chromosomes includ-
ing mut, mutG and Gene were shown in Figure 1.
Across DEGs in expression profiles and

DNASeq analysis, we obtained the correlation of
DEGs and logFC, mut, Pmut, Gene, mutG and

Amut/G using spearman correlation test (Table
II). The analysis found that the number of DEGs
had significantly positive correlation with mut (p
= 0.000009) and mutG (p = 0.00001), that is, the
more the mut and mutG, the more the DEGs, but
had no significant correlation with logFC (p =
0.401), Pmut (p = 0.112), Gene (p = 0.111) and
Amut/G (p = 0.112).
Genes which were both DEGs in expression

profiles and mutational genes, and their chro-
mosomal distributions were identified by
screening DEGs and mutational genes in our
study (Figure 2). It was shown that there were
811 genes which were both DEGs and muta-
tional genes, and genetic mutations were found
in an average of 48.7% of DEGs. That showed
that the differential expressions of genes might
originate from genetic variations, or the differ-
ential expressions of genes could influence the
genetic structure.
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Figure 1. Chromosomal distributions of the DEGs in expression profiles and genetic mutational information. (DEGs: differ-
entially expressed genes; mut: genetic mutations; mutG: mutational genes; Gene: genes in chromosomes).

logFC mut Pmut Gene mutG Amut/G

DEGs Correlation coefficient 0.184 0.7844 -0.340 0.341 0.778 0.340
p value 0.401 0.000009 0.112 0.111 0.00001 0.112

Table II. The correlation of differentially expressed genes in expression profiles and genetic variations by Spearman correla-
tion test.

mut: the number of genetic mutations; Pmut: the percent of mut in total gene; Gene: the number of genes in chromosomes;
mutG: the number of mutational genes; Amut/G: the ratio of total mutations to total genes in chromosomes, i.e. the average of
genetic mutations in each gene.



Discussion

The lack of effective early detection and thera-
py makes ovarian cancer patients present high
mortality and poor prognosis. Molecular mecha-
nism of ovarian cancer becomes a burning ques-
tion. To identify molecular basis involved in
ovarian cancer, the present study attempted to in-
vestigate the association between gene expres-
sion profiles and genetic variations on genome-
wide in ovarian cancer.
As described in previous study, genetic varia-

tions and differential expressions of transcription
profiles had been investigated widely37-40. Evi-
dence from epidemiology suggested that genetic
factors might play an essential role in the devel-
opment of ovarian cancer39,41. Predispositions to
certain cancers have been linked to an ever-in-
creasing number of mutations42. To date, multiple
mutations in different genes have been associated
with the development of ovarian cancer. Activat-
ing mutations in fibroblast growth factor (FGF)
had been associated with an increased risk of
ovarian cancer41. Genetic variation in insulin-like
growth factor 2 (IGF2) also played an important
role in influencing risk of ovarian cancer38,43.
More recently, in older to build a complete cata-
log of cancer genes, Lawrence et al44 identified
almost all known cancer genes as well as 33 nov-
el mutated genes by analyzing nearly 5,000 pa-
tient samples from 21 tumor types, and found
that about 20 percent cancer genes existed high-

frequency mutations and most genes were mutat-
ed within intermediated frequencies.
Previous researches45-47 showed that there were

enormous amount of DEGs between tumor pa-
tients and normal people. Identifying DEGs of
cancers by gene expression profiles had been
popularized recently48-52. Two genes (DOC-1 and
DOC-2) were identified as DEGs using a DNA-
fingerprinting approach with Northern analysis
confirmed39. Hough et al53 exhibited global gene
expression profile from various ovarian cell lines
and tissues using a serial analysis of gene expres-
sion, and gained a total of 444 up-regulated
genes. A study on ovarian metastasis51 showed
that fifty-six genes demonstrated differential ex-
pression between ovarian and metastasis samples
by microarray analysis of global gene expression
patterns.
Recently, differential expression has been re-

lated to genetic variations37,54. Jazaeri et al54 indi-
cated that gene mutations would lead to the
change of molecular phenotypes by comparing
gene expression in ovarian cancer associated
with mutations in BRCA1 and BRCA2. A study
about pseudohypoxic pheochromocytomas and
paragangliomas associated with SDHB, SDHD,
and VHL mutations showed that the gene expres-
sion profiles depended on tumor location as well
as underlying mutation42. In another research of
Lawrence55, somatic mutation frequency in can-
cers was found strongly correlated with gene ex-
pression level by whole-genome and whole-ex-
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Figure 2. Genes which were both DEGs in expression profiles and mutational genes, and their chromosomal distributions.
(DEGs: differentially expressed genes; mutG: mutational genes).
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ome data analysis. Consistent with previous
study, our finding also illustrated the correlation
between expression profile and genetic variations
in genome-wide scale.

Conclusions

In the present study, gene expression profiles
of ovarian cancer were compared with normal
controls to identify new biomarkers for disease
early diagnosis. Association of specific genes
may lead to identification of new diagnostic
markers and potential therapeutic targets. Various
genetic mutations in chromosomes and DEGs in
expression profiles resulted in ovarian and fallop-
ian tube cancer were identified. We showed that
DEGs of expression profiles significantly posi-
tive correlated with genetic variations including
mut and mutG. In about half of the DEGs, gene
mutations were found. It is possible that changes
of expression profiles might originate from ge-
netic variations, or differential expressions could
impact the genetic variations. In a word, the ex-
pression profiles and the genetic changes have
significant correlation.
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