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Abstract. Data collection has suggested a 
complex correlation between the gut microbiota 
(GM) and bone homeostasis involving host-mi-
crobiota crosstalk. Although the GM is known to 
affect bone metabolism, the mechanisms linked 
with these effects remain unclear. The aim of this 
review is to current insight advances regarding 
how gut-derived hormones regulate bone ho-
meostasis in humans, emphasizing gut-bone 
axis and bone regeneration. The GM may be en-
gaged in bone metabolism and fracture risk. Ad-
ditional investigations of the fundamental mi-
crobiota-related pathways in bone metabolism 
may uncover treatment strategies and enable 
the prevention of osteoporosis. A better knowl-
edge of gut hormones’ action on bone homeo-
stasis may lead to new strategies for preventing 
and treating skeletal frailty related to age.
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Introduction

The key importance of the gut microbiota (GM) 
in the regenerative process of the body has been out-
lined by several authors. It is the place where every-
thing commences before any symptom or pathology 
event is detected or evolves. The balance/unbalance 
between the gut constituent parts is known as sym-
biosis/dysbiosis, which accurately reflects a system-
ic health state1-9. The healthy human gut is dominat-
ed by six bacterial phyla: Bacteroidetes, Firmicutes, 
Actinobacteria, Proteobacteria, Fusobacteria, and 
Verrucomicrobia. Bacteroidetes and Firmicutes ac-
count for a large majority of the microbiota10-16.

The regenerative mode and the equilibrium 
of the various components of the gut microenvi-
ronment play a key role in highlighting the an-
ti-process and the core of Regenerative Medicine. 
Therefore, any therapeutic approach, including 
stem cells (SC) and immune therapy, must be con-
ducted considering this sheer dynamism13-19.

During the past two decades, the attention on 
the gut has revealed a few important features. 
The most critical designates the gut as a branch 
of the central nervous system (CNS) sharing 
many common physiologic and biochemical/neu-
rochemistry traits; this is the reason why it was 
named the enteric nervous system (ENS), which 
is in charge of the entire gastrointestinal activities 
independently of the CNS.A second aspect dis-
covered is the intimate interconnection between 
the two systems through the complex nerve-net 
pathways, so a disturbed ENS is often linked not 
only to different types of digestive disorders but 
could be affected by the pathogenicity occurring 
in  the CNS and vice versa20-28.

The gut’s unique biological environment makes 
it comparable to superefficient structures in charge 
of absorbing, releasing, and producing many vi-
tal elements for life29-36. Microbes are differently 
distributed along the gastro-intestinal (GI) tract 
concerning their functions and activities, with a 
different presence from the stomach to the colon. 
A huge number of bacterial species exist from 
the mouth cavity through the GI tract, where the 
initial digestive reaction step occurs37-45. There 
are relatively stable microbial populations in the 
proximal part of the esophagus, while in the distal 
part, a unique microbial diversity dominates, con-
stituted mainly by Streptococcus species together 
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with minor amounts of different genera such as 
Prevotella, Actinomyces, Lactobacillus, and Staph-
ylococcus37,46-52. The local genera tend to be stable 
in number and diversity    and any increased lev-
el of microbial variety is linked to the insurgence 
of chronic inflammation responses and different 
types of dysplasia (Figure 1)5,53-59.

Gut Microbiota and Bone Diseases: 
A Growing Partnership

Any clinical approach to regenerate damaged 
tissues should consider the patient’s general met-
abolic condition. In fact, many of the systemic de-
generative diseases that exist in organs and sys-
tems reflect a unique metabolic dysfunction60-66.

These clinical disorders may include various 
conditions involving degeneration and loss of bone 
mass, skin, and epithelial destruction. Bone decay, 
for instance, is contradistinguished by a steady 
progressive decay linked to lower production of 
osteoid matrix, elastin, and collagens accompanied 
by a lower mineralization process in both cancel-
lous and cortical bone substrates with an accelerat-
ed trend towards the remodeling mechanism due to 
an abnormal higher osteoclastic activity67-72.

Overweight, obesity and associated metabol-
ic complications, such as type 2 diabetes mellitus 
(DM-2), cardiovascular disease (CVD) and kidney 
disease, are not just a pandemic health issue but, 
as some studies73-76 have confirmed, they are mul-
tifactorial complications mainly related to chronic 
disturbances of the GM and GI tract and possibly 
enhanced by specific genetic predisposition. An 
uncontrolled fat accumulation due to a hyperac-
cumulation of adipocytes tends to disrupt GM 
composition. Clinical studies performed on obese/
overweight patients revealed a reduction in Bacte-
roidetes phylum, Bifidobacterium and Bacteroides 
with a proliferation of Firmicutes, Staphylococcus, 
Enterobacteriaceae and Escherichia coli. This 
dysbiosis eventually leads to a state of alteration 
of local immune mediators that in turn encourages 
the progression of chronic inflammation and met-
abolic dysfunction77-79. The first breakdown is the 
gradual destruction of the gut system’s protective 
shield, known as the “mucosal firewall”, adopted to 
keep stable gut internal homeostatic relationships 
within the microbiota by reducing, as much as pos-
sible, the direct interaction between microorgan-
isms and the epithelial cell surface29,80,81.

Figure 1. Structurally, the complexity of biochemical, immune, and regulatory functions of microbiota in metabolism invol-
ves the complete participation of different systems: Central Nervous (CNS), Gastro-Enteric, Cardio-Vascular, Immune and 
Adipose systems. Predisposing conditions that escalate in prevalence during aging, such as obesity, insulin resistance, inflam-
mation, altered hypothalamus- hypophysis suprarenal axis, stress and hypertension are all directly and indirectly involved in 
the insurgence of metabolic syndrome (MS)40.
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However, what is the relationship between this 
issue and the bone system? Results from Wang 
et al66, confirmed through the outcomes obtained 
from the RNA sequencing of 16S ribosomal of 
the intestinal microbial diversity in patients af-
fected by primary osteoporosis, osteopenia, and a 
group control, that the mechanism by which bone 
strength and shape are determined might be the 
result of GM. Their conclusions revealed 3 dif-
ferent numbers and different typologies of bacte-
ria evidenced in the 3 different groups of patients 
affected by osteopenia, osteoporosis, and normal 
controls. The osteopenia patients revealed an in-
creased number of Firmicutes phyla with fewer 
Bacteroidetes compared to normal control pa-
tients. In addition, Synergistetes were detected in 
both osteoporosis and osteopenia patients but they 
were absent in the normal control group. Bac-
teroides, Faecal bacterium and Prevotella were 
the 3 main agents in the normal control group, 
Prevotella was consistently present in the osteo-
porosis group and low in the osteopenia group. 
The Lachnoclostridium and Klebsiella genera 
were highly present in osteoporosis and osteope-
nia compared to the normal control group66.

The mechanism by which GM eventually in-
terferes in bone metabolism inducing osteoporosis 
and osteopenia still remains to be fully elucidat-
ed. An initial assumption could be the disturbance 
of the immune-endocrine inflammatory axis that 
links the GM to bone metabolism. Much evidence 

has been collected from patients affected by the in-
flammatory process of Crohn’s disease and ulcer-
ative colitis, which eventually contributes to the in-
surgence and the development of osteoporosis. One 
of the mechanisms involved could be related to the 
immune-mediated bone metabolism that includes 
the receptor activator NF kappa B ligand NF-κB-
RANK (RANKL) and osteoprotegerin (OPG) axis 
together with the immunoreceptor tyrosine-based 
activation motif (ITAM), all members of the TNF 
super-family that share the same signaling pathway 
of androgen hormones (Figure 2)82.

More explicitly, the activation in mononucle-
ar cells of NF-κB coordinates the transcription 
of IL-1, IL-6, IL-8 and other peptides important 
to the inflammatory response and up-regulates 
the expression of pro-inflammatory genes such 
as TNF-α, adhesion molecules, and different 
chemokines83,84. In addition, any disturbances in 
this axis contribute to a decreased presence of 
hormones estrogen/progesterone with a progres-
sive augmentation of pro-inflammatory factors 
such as TNF that interfere in the physiological 
bone turnover and bone diseases, as well as in 
immune- tolerance and cancer85,86.

Intriguingly, OPG, which has been shown to 
inhibit osteoclast genesis via RANK, is expressed 
primarily by bone marrow stromal mesenchy-
mal stem cells. These cells can be activated in B 
lymphocytes, follicular dendritic cells, and can 
be up-regulated by TGF-β, IL-1, TNF, estrogen, 

Figure 2. Normal osteoclasto-
genesis signaling intracellular pa-
thway takes place with the initial 
presence of RANKL (ligand) which 
is a byproduct of osteoblasts activi-
ty under physiological conditions. 
Osteoblasts bind to RANK located 
on osteoclast precursors, once the 
bound is achieved, the adaptor pro-
tein TRAF6 bind on RANK and 
activate the NF-κB initiating the 
translocation into the nucleus. Wi-
thin the nucleus, c-Fos is expressed 
acting with NFATc1 to switch on the 
transcription of osteoclastogenic ge-
nes. OPG, expressed by BM stromal 
stem cells, inhibits the initiation of 
the osteoclast activation by blocking 
the RANKL initiation phase83.
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Wnt ligands and down-regulated by prostaglan-
din E2 (PGE2) and glucocorticoids. Of note, in 
the situation of estrogen deficiency, the RANKL 
is over-expressed, and OPG is downregulated, 
promoting osteoclast hyperactivity, a condition 
that explains the bone loss in both males and fe-
males after a certain age87-89. Another important 
phenomenon that alters gut functions is the su-
per-presence of osteoclast remodeling activity 
that is always connected to the equivalent over-
expression of TNF-α, interleukins 1α and 1β, IL-
6, IL-11, IL-17, TGF-α, epidermal growth factor 
(EGF), and prostaglandin E290,91.

The role of IL-6 has been investigated, and 
the results confirmed its involvement as a central 
actor in osteoporosis which also relates to a con-
comitant decrease of both male and female sex ste-
roids. Interestingly there have been implied genetic 
variations in the IL-6 and IL-1 receptor antagonist 
genes that were strictly related to the inflammatory 
mechanism typical of bowel disease and correlated 
bone damage92,93. The possibility of changing the 
bone decay metabolism and increasing density and 
mass by reversing the inflammatory process pass-
ing through the treatment of GM, was achieved 
using specific probiotics that revealed an import-
ant immune-modulation activity on IGF-1, TNF-α 
and IL-1β and stimulated the presence of IL-7 and 
IFN-γ (Figure 3)94-97. 

The Dual Role of Vitamin K and D 
in “Bone-Gut Crosstalk”: 
Effects on Bone Metabolism

The GM functions as a multitasking system 
and, more precisely, as a metabolic-nervous-im-
mune-endocrine complex structure. The GM 
involvement in bone formation, density and ho-
meostasis is extremely important. Both vascu-
lar calcification and osteoporosis share a similar 
etiopathogenetic mechanism that is mainly relat-
ed to the deficiency of gut bacteria responsible 
for the synthesis of vitamin K2, causing the so-
called “calcium paradox”, that is contradistin-
guished by the lack of calcium in the bone and its 
ectopic deposit in the vessel walls, outside bone 
and joints98-101. Notably, the vitamin K correlat-
ed enzymes, epoxide reductase (VKOR) subunit 
1(VKORC1) could also be used as-104 a marker 
for degenerative bone conditions102-105. The stra-
tegic function of VKORC1 as a main oxidore-
ductase enzyme is to permit the absorption of 
vitamin K quinone by dietary uptake, reducing 
it into the hydroquinone (KH2) form, allowing 
the entry of vitamin K into the whole vitamin K 
cycle106-108. The entire following cascade leads to 
the oxidation of vitamin K hydroquinone to vita-
min K 2,3-epoxide (mechanism that takes place 
in the post-translational activation of vitamin 
K-dependent (VKD) phase), which involves pro-

Figure 3. The possibility of changing the bone decay metabolism97.
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teins in charge of the enzymatic conversion of 
Glu residues into γ-carboxyglutamate (Gla) res-
idues. The VKORC1 is in charge of completing 
the cycle by reducing the K>O to K and KH2, 
ensuring the efficient reuptake of vitamin K and 
proceeding to the necessary following sequenc-
es of γ-carboxyglutamate107,109-113. On the other 
hand, the Tsk gene was shown to be important 
in the collagen-accumulating mechanism, the 
Matn2 is involved in the formation of extracel-
lular matrix like collagen, whereas CD14 con-
trols both osteoblast and osteoclast producing 
modes through the B lymphocyte differentiation 
mechanism, indicating the SXR/PXR-vitamin K 
mechanism as a key regulator of bone homeo-
stasis19,114-119. Bone cell’s microenvironment is a 
3-dimension structure composed through a co-
operation of different proteins such as proteo-
glycans and glycosaminoglycans (GAGs) that 
compose the extracellular matrix (ECM). Bone 
tissue has a unique composition morphologically 
modulated through dynamic biomechanical and 
biophysical forces within the cellular microenvi-
ronment and is composed by the activity of mul-
tiple and different cell lineages120,121. Bone, as a 
system and structural support, tends to decay 
with age. The osteoclastic activity, with time and 
under the influences of endogenous metabolic 
adversities and hormonal deficiency, tends to in-
crease. In contrast, the osteoblast activity tends 
to slow down and eventually stop completely121. 
Through an inevitable process, aging accelerates 
because of intrinsic and extrinsic factors leading 
to degenerative processes and diseases. Intrinsic 
influences may include a genetic predisposition 
and several micro-molecular and cellular envi-
ronment abnormalities, hormonal and biochem-
ical and metabolic diseases. External factors in-
clude lifestyle, nutrition, and comorbid medical 
conditions and drugs. 

The underlying mechanism of osteoporosis in 
older adults is strictly associated with hormonal 
deficiency linked with a gradual and progressive 
increase of bone resorption by osteoclasts and a 
significant osteoblast deficiency with a substan-
tially reduced calcium matrix formation and loss 
of bone tissue. 

The condition tends to worsen due to addition-
al alterations of derived bone marrow stem cell 
differentiation predominantly towards an adipo-
genesis phenotype under the dominating effect of 
estrogen over testosterone and progesterone with 
a consequent lipotoxicity effect that inhibits ma-
trix formation and mineralization. 

The overall scenario is a faster decline in 
biochemical responses of bone remodeling with 
the predominance of bone resorption over bone 
formation122,123. The bone-forming matrix osteo-
blasts, the bone-resorbing osteoclasts, and mech-
anosensor/mediator osteocytes are all receptive to 
signaling sent through hormones, cytokines, min-
erals, and dietary molecules. The direct impact of 
sex hormones on bone health, matrix formation 
and density are performed through the bound of 
specific receptors (Androgen and Estrogen) and 
Mesenchymal Stem Cells (MSC).

One of the most important functions of testos-
terone and estrogen is their inhibitory activity on 
osteoblast and osteocytes premature death with 
a correspondent inhibition of osteoclastogenic 
cytokine production from immune cells such as 
IL-1, IL-6, IL-7, TNFα and M-CSF through the 
mediation effect of IgF-1124-127.

An additional important factor in this cycle is 
the presence of osteocalcin (OCN), which is an 
osteoblast-specific non-collagenous protein. The 
relationship between OCN, osteoblasts and tes-
tosterone regards the way bones function as an 
endocrine system. The presence of OCN strictly 
depends on the qualitative level of osteoblasts and 
a deficient OCN level negatively affects the pro-
duction of testosterone from Leidig cells           128-133. 
Thus, Runx2 and Cyp11a1 play an important role 
in bone homeostasis and metabolism of non-os-
seous cell types like testis and breast cancer cells 
that confirm alternative biological participation of 
Runx2 in sterol/steroid metabolism pathway126,134. 
Additionally, hormones belonging to the Glp-1/
leptin/insulin axis are also involved in this mech-
anism. The multi-task feature of GLP-1 sees this 
hormone involved in the expression of Runx-2 
gene through the activation of osteoblast differ-
entiation mechanism within bone marrow whilst 
increasing the mRNA of OCN and consequently 
the expression of AP and pro-peptide of type I 
procollagen (P1NP)135-137.

However, to be active, OCN needs to be car-
boxylated at the level of three Gla residues with 
the presence of vitamin K, the carboxylation gen-
erates a high-affinity binding to hydroxyapatite 
(HAP) and allows the connection of carboxylated 
OCN to newly formed bone matrix130,134,138-147.

Conversely, uncarboxylated OCN disrupts the 
OCN/hydroxyapatite bond supporting the OCN en-
trance into circulation. As previously mentioned, low 
levels of OCN negatively impact β cells, with greater 
accumulation of fat mass and decreased insulin sen-
sitivity. This has been evidenced by the subcutaneous 
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infusion of recombinant OCN into mice that devel-
oped a better glucose tolerance and higher insulin 
sensitivity130,147-156. However, why and when will OCN 
not be able to attach to HAP? In clinical diagnostics, 
the circulating non-carboxylated OCN (ucOC) per-
centage would be used as a vitamin K biomarker. 
Thus, vitamin K important function reappears once 
again, as it affects the carboxylation process of OCN 
and is deeply involved in bone formation and homeo-
stasis, as previously mentioned157-168.

Conclusions

Mutually, this pattern of metabolic cofactors 
can switch gut barrier disruption and microbio-
ta dysbiosis leading to the amelioration of bone 
loss progression by modulating major players of 
the gut-bone axis. While numerous studies report 
the therapeutic potential of probiotics and since 
the GM of certain pathological states has been 
relatively characterized, we speculate that the ad-
ministration of certain bacterial species as probi-
otics could be reasonable as novel independent or 
adjunct therapies for several human pathologies.

Finally, these observations will lead to a better 
understanding of the relationship between bone 
homeostasis and the microbiota in aging.
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