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Abstract. – OBJECTIVE:  In addition to sig-
nificantly reducing breast cancer recurrence 
risk, radiotherapy also prolongs patients’ lives. 
However, radiotherapy-related genes and bio-
markers still remain poorly understood. The 
present study aimed to identify radiation-asso-
ciated genes in breast cancer. 

MATERIALS AND METHODS: Breast cancer 
data were downloaded from Gene Expression 
Omnibus (GEO) and UCSC Xena database. The 
gene ontology (GO) enrichment and gene set en-
richment analysis (GSEA) were performed for an-
notation and integrated discovery. Protein-pro-
tein interaction (PPI) network was constructed 
by STRING database and hub genes were iden-
tified. Then, immunohistochemistry and tissue 
expression of key genes was analyzed by using 
the Human Protein Atlas (HPA) and GEPIA da-
tabase. Genes associated with prognosis were 
identified by performing univariate cox analysis.

RESULTS: We identified 341 differentially ex-
pressed genes related to radiotherapy in breast 
cancer patients. PPI analysis revealed a total of 
129 nodes and 516 interactions and identified five 
hub genes (EGFR, FOS, ESR1, JUN, and IL6). In 
addition, 11 SDEGs THBS1, SERPINA11, NFIL3, 
METTL7A, KCTD12, HSPA6, EGR1, DDIT4, CCDC3, 
C11orf96, and BCL2A1 candidate genes can be 
used as potential diagnostic markers. The calibra-
tion curve and ROC indicate good probability con-
sistencies of 3-years and 5-year survival rates of 
patients between estimation and observation. 

CONCLUSIONS: Our findings provide nov-
el insight into the functional characteristics of 
breast cancer through integrative analysis of 
GEO data and suggest potential biomarkers and 
therapeutic targets for breast cancer.

Key Words:
Bioinformatics, Radiation therapy, Biomarkers, 

Breast cancer.

Introduction

Breast cancer is the most common cancer type 
among women worldwide, and it is also the lead-
ing cause of tumor-related female death1-3. Ac-
cording to the latest data from the International 
Agency for Research on Cancer (IARC) of the 
World Health Organization, more than 2.26 mil-
lion breast cancer cases occurred in 2020, the first 
time surpassing lung cancer and becoming the 
most prominent cancer in the world4-6. In 2020, 
about 420,000 new cases of breast cancer and near-
ly 120,000 deaths occurred in China. Chemother-
apy, radiotherapy, surgery, targeted therapy, and 
immunotherapy treatment strategies have greatly 
improved the prognosis of breast cancer patients7. 
Radiotherapy is an essential treatment for breast 
cancer. It can reduce the recurrence and prolong 
the survival time of breast cancer patients and is 
a necessary palliative treatment for patients with 
inoperable locally advanced and metastatic breast 
cancer8-10. However, there is increasing evidence 
that the response of breast cancer patients to radi-
ation therapy is heterogeneous, which significant-
ly impacts clinical effectiveness and quality of 
life. Hence, this study aimed to identify potential 
diagnostic biomarkers and biological functions 
related to breast cancer from the Gene Expression 
Omnibus. Furthermore, cross-validation investi-
gated radiation-related differentially expressed 
genes (DEGs) to distinguish patients with breast 
cancer from healthy controls. Moreover, the bio-
logical processes (BPs) involved were analyzed 
using gene ontology (GO) enrichment and gene 
set enrichment analysis (GSEA) pathways for the 
SDEGs. In addition, overlapping SDEGs screened 
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via protein-protein interaction (PPI) network 
was selected for their functional similarity, and 
their diagnostic value was assessed. Our study 
provides insights into breast cancer’s molecular 
mechanisms based on its pathophysiology.

Breast cancer can be divided into different 
types according to its molecular features, his-
topathological manifestations, and clinical re-
sults11,12. However, different types can not fully 
describe the clinical significance of breast cancer. 
Thus, exploring the difference in the effectiveness 
of radiotherapy for breast cancer and preventing 
overcrowding and undertreatment remains an 
urgent challenge. In addition, more and more ev-
idence shows that early diagnosis and treatment 
will lead to a good prognosis, early detection and 
improvement of treatment will significantly re-
duce the mortality of breast cancer patients, and 
post-RT treatment can effectively improve the 
clinical effect13. Moreover, cancer survival related 
to RT-induced symptoms is essential, which may 
affect the quality of life (QOL)14. There is a lack of 
reliable and detailed clinical biomarkers for pre-
dicting breast cancer after radiotherapy, and the 
pathways and genes related to breast cancer radio-
therapy are still unclear. Therefore, it is urgent to 
look for new diagnostic markers with high sensi-
tivity and specificity to distinguish breast cancer 
from benign breast diseases and normal samples.

As an interdisciplinary discipline, Bioinfor-
matics has made a breakthrough in medical re-
search15-19. Many bioinformatics studies20-23 have 
been used to predict the mechanism of drug resis-
tance and detect molecular biomarkers in radio-
therapy. However, tumors may gradually adapt to 
changes in physical and chemical characteristics 
in the body’s microenvironment during radiother-
apy and gain resistance to radiotherapy. The poor 
prognosis of breast cancer is related to radiothera-
py resistance, and the poor pathology may aggra-
vate radiotherapy resistance. More personalized 
RT therapy tailored to individual risk and tumor 
biology will help improve patients’ prognoses. Cur-
rently, several radiation-related genes are reported, 
while no applicated biomarkers are in the clinic. 
There are few studies on the changes in breast 
cancer gene expression during radiotherapy24,25. 
Eschrich et al24 reported 10 hub genes (AR, cJun, 
STAT1, PKC, RelA, cABL, SUMO1, CDK1, HDAC1, 
and IRF1) associated with intrinsic radiosensitivi-
ty, relating different pathways, such as cell cycle, 
DNA damage response, histone deacetylation, pro-
liferation and apoptosis. However, the low statisti-
cal sample makes it difficult to assess the prognosis 

of breast cancer patients with RT treated in 2 inde-
pendent BC patients. Another study25 reported that 
radiation response was associated with p53. None 
of these hub genes was validated in clinical prac-
tice. Therefore, identifying differentially expressed 
genes may overcome the molecular mechanism of 
radiotherapy resistance to breast cancer. 

In this study, we aimed to combine the machine 
learning algorithm (SVM) with various bioinfor-
matics methods to determine the potential diag-
nostic markers of breast cancer based on the gene 
expression dataset from the GEO database. Univar-
iate cox analysis was used to identify prognosis-re-
lated vital genes. These genes expression of vari-
ous tissues were analyzed in the Gene Expression 
Profiling Interactive Analysis (GEPIA) and cancer 
genome atlas (TCGA). Furthermore, CIBERSORT 
was initially used to estimate the difference in im-
mune infiltration between normal and breast cancer 
tissue in 22 immune cells. This study investigated 
early breast cancer’s possible molecular immune 
mechanism and the association between infiltrating 
immune cells and diagnostic markers.

Materials and Methods

Data Acquisition
TCGA transcriptome data, and clinical data 

for breast cancer, including 120 normal and 1,097 
cancer samples, were downloaded from the UCSC 
Xena database (http://xena.ucsc.edu/)26. Reliable 
breast cancer radiotherapy profiles of GSE59733 
and gene expression profiles of GSE71053 were 
obtained from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/)27. The GSE59733 dataset 
is based on the Affymetrix Human Almac Xcel 
Array GPL18990 provided by Horton JK. It con-
tains 9 tumor samples before radiotherapy and 10 
tumor samples after radiotherapy. The GSE71053 
dataset was uploaded by Pedersen IS, including 6 
normal samples and 12 tumor samples28.

Differentially Expressed Genes Between 
Pre- and Post-Radiotherapy

The ComBat function of SVA package was ap-
plied to remove batch effects on the GSE59733 
dataset29. Then, the PCA analysis was carried out 
on the batch-corrected data by princomp function 
to check whether breast cancer samples could be 
clearly distinguished before and after radiothera-
py. The limma package was performed to screen 
Radiation differentially expressed genes (RDEGs) 
between pre-radiation tumor samples and post-ra-
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diation tumor samples from the GSE59733 data-
set30. The volcano diagram was generated by 
ggplot2 package31. The 3D PCA plot was gener-
ated by the scatterplot3d R package. The p-value 
of the RDEGs was calculated by using the t-test 
method. |log2foldchange| > 1 and p-value < 0.05 
were the cut‑off criteria for RDEGs. Before and 
after the pre- and post-radiation, Hub genes with 
significant differential expression were selected. 
The pROC package was applied to analyze FDC-
SP between pre- and post-radiotherapy32. Boxplot 
was generated by the ggplot2 package.

Functional and Pathway Enrichment 
Analysis

The “median” expression of FDCSP was used 
as the group cut-off to assign the higher and lower 
expression of FDCSP as the high and low groups 
of the GSE59733 dataset. Limma package in R 
was performed to screen Single gene differential-
ly expressed genes29. In order to identify SDEGs, 
we used a p-value of 0.05 and a |log2FC| of greater 
than one as cut-off c-value criteria. The cluster-
Profiler package33 was used to analyze Gene On-
tology (GO) functions34 and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways35 of 
SDEGs. GO annotation analysis is a ubiquitous 
method for large-scale functional enrichment of 
genes, including the cellular component (CC), 
molecular function (MF), and biological process 
(BP). KEGG is a widely used database for ana-
lyzing information about genomes, biological 
pathways, diseases and drugs. Adjusted p-value < 
0.05 was considered statistically significant. Ac-
cording to the phenotypic correlation, the trend of 
gene distribution in a set of predefined genes clas-
sified in the gene table can be better described.

Gene set enrichment analysis (GSEA) was car-
ried out between the high-risk and low-risk groups 
according to the gene expression data by cluster pro-
file package. We selected “c2.cp.kegg.v7.0.symbols.
gmt” as the internal reference gene set, false dis-
covery rate (FDR) < 0.25 and p value < 0.05 were 
considered as significant enrichment. The GSVA 
package36 was used to perform gene set variation 
analysis with the high and low gene expression 
groups, the Hallmark, KEGG, GO-BP, GO-CC, and 
GO-MF were selected as reference gene sets.

Construction of PPI Network Analysis 
Underlying FDSCP

The interaction relationship of the SDEGs was 
predicted from the STRING (https://www.string-db.
org/) database37, and the protein-protein interaction 

(PPI) network was constructed to visualize using 
Cytoscape software38. The MCODE39 and cytoHub-
ba40 plug-ins identified Hub genes in the PPI net-
work. Meanwhile, the mRNA-miRNA interaction 
relationship of FDCSP was constructed based on 
miRWalk database41 (http://mirwalk.umm.uni-hei-
delberg.de/) and visualized by Cytoscape software.

Estimation of the Association Between 
Immune Infiltration of Hub Genes and Its 
Related Diagnostic Markers

By default, CIBERSORT deconvolutions the 
transcriptome expression matrix based on the lin-
ear support vector regression (SVG) to evaluate 
the composition and frequency of immune cells 
in mixed cells42. The immune cell infiltration was 
obtained by using genes in the signature matrix 
with the CIBERSORT method. The pheatmap 
package in R (https: //CRAN. R-project. Org/
package = pheatmap) plot the distribution of 22 
immune cells in each sample. The ggplot2 pack-
age plotted the distribution of immune cells in 
samples. The correlation of 22 kinds of immune 
cell infiltration was visualized by correlation heat 
map generated with the corrplot package. The vio-
lin graph plotted by the ggplot2 software package 
was used to visualize the differences in 22 kinds 
of immune cell infiltration in FDCSP expression 
groups. The correlation between FDCSP, hub 
gene, and immune cell infiltration was analyzed 
and then visualized with the ggplot2 package.

The Expression Analysis of Hub Genes 
HPA (https://www.proteinatlas.org/) is a bi-

ological research platform based on the TCGA 
database, which uses various combinatorial tech-
niques to characterize the expression of proteins 
in tissues and cells, including the localization and 
distribution of thousands of proteins in various 
cancer tissues. GEPIA (http://gepia.cancer-pku.
cn/) is an online analysis website based on tran-
scriptome sequencing data from 9,736 tumor sam-
ples and 8,587 normal samples from TCGA and 
GTEx databases, which can be used to evaluate 
the correlation between the two genes in cancer. 
We analyzed the expression and distribution of 
FDCSP in the HPA database (https://www.pro-
teinatlas.org/)43 and GEPIA database (http://ge-
pia.cancer-pku.cn/)44. 

Construction of Predicted Hub 
Genes-Based Prognostic Model

Univariate cox analysis was conducted by using 
survival package that screened the prognosis-re-
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lated SDEGs. Two machine learning algorithms, 
SVM and Lasso Rogers regression were further 
used to screen the diagnostic markers. The Las-
so Rogers regression model analysis was carried 
out with the glmnet package45, the SVM model 
analysis was carried out with the randomForest 
package46. The final result is the intersection of 
the diagnostic markers obtained from the two al-
gorithms. The TCGA-BRCA dataset was divided 
into a 1:1 training and validation sets. In the train-
ing set, multivariate cox analysis was performed 
to construct the prediction model. Kaplan-Meier 
survival and ROC curve were performed on the 
validation and all sets to verify the predicted 
prognostic model.

The Risk Score and Clinical Nomogram 
Construction

To further obtain clinical prognostic factors, 
univariate and multivariate cox analysis was per-
formed on a training dataset with clinicopatho-
logical features (risk score, age, tumor stage, N 
stage, T stage and M stage). These clinical prog-
nostic factors constructed two nomograms. ROC 
and calibration curves are used to evaluate the 
prediction efficiency of the nomogram chart.

Statistical Analysis
All analyses in this study were performed with 

R software (Version 4.0.2), and p-value < 0.05 
was considered statistically significant. For the 
comparison of continuous variables between two 
groups, the statistical significance of normally 

distributed variables was estimated by the inde-
pendent student t-test, and the Mann Whitney U 
test analyzed differences between non normally 
distributed variables. The Chi-square or Fisher’s 
exact test was used to compare and analyze the 
statistical significance between two groups of cat-
egorical variables. The survival package of R was 
used to perform survival analysis, Kaplan Meier 
survival curves were used to show survival dif-
ferences, and the log-rank test was used to assess 
the significance of differences in survival times 
between the two groups. Univariate and multi-
variate Cox analyses were based on the survival 
R package, and lasso analysis was based on the 
glmnet R package. All statistical p-values were 
two-sided; a p-value < 0.05 was considered statis-
tically significant. 

Results

The Expression of Genes Differs Between 
Pre- and Post-Radiotherapy 

Data normalization is necessary to obtain valid 
results in gene expression analysis before down-
stream analyses. After normalization, the median 
expression of all samples in the GSE59733 dataset 
at the same level after the batch effect is removed 
(Figure 1). PCA results revealed that samples 
could be clearly distinguished between pre- and 
post-radiotherapy (Figure 2C). A total of 341 
RDEGs were discovered, including 183 up-reg-
ulated RDEGs and 158 down-regulated RDEGs.

Figure 1. The boxplots for gene expression of each sample in the GSE59733 dataset. A, Boxplot of gene expression of each 
sample prior to normalization. B, Boxplot of gene expression of each sample after normalization. 
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Differential Expression Analysis
The follicular dendritic cell secreted peptide 

(FDSCP) gene that has a significantly different 
expression before and after radiotherapy and is 
reported in breast cancer was selected as the re-
search object. These genes profiles were conduct-
ed to analyze expression differences before and 
after radiotherapy. Figure 3 showed that the ex-
pression of the FDCSP gene changed significant-
ly before and after radiotherapy (p < 0.05), and 
ROC analysis showed that the AUC value of the 
FDCSP gene was 0.922, which had a relatively 
high prediction accuracy.

Analysis of Pathway and Functional 
Enrichment 

One hundred eighty-nine candidate genes 
(64 up-regulated genes and 125 down-regulated 
genes) were obtained from the hub gene differ-
ential expression analysis of FDCSP genes. The 
overlapping SDEGs were subjected to GO anal-
ysis and KEGG pathway enrichment analysis. In 
GO enrichment analysis, the terms such as “re-
sponse to steroid hormone”, “response to reactive 
oxygen species” and “response to glucocorticoid” 
were significantly enriched. In KEGG pathway 
analysis, several significantly pathway involved, 
such as “IL-7 signal pathway”, “rheumatoid ar-
thritis”, and “MAPK signal pathway” were found 
(Supplementary Figure 1). A summary of the 
total number of GO terms is given in Table I. De-
tailed information on KEGG enriched pathway 
is shown in Table II. Then, GSEA and GSVA 

(hallmark gene set) were used to investigate the 
relationship between enriched pathways and tu-
mor characteristics based on the ffgiold change 
of FDSCP on GSE59733 dataset. Gene set vari-
ation analysis (GSVA) was used to explore fur-
ther the differences between subtypes based on 
biological process (BP), cellular component (CC), 
and molecular function (MF) in terms of GO and 
KEGG pathways, the top four pathways as shown 
in Figure 4. Furthermore, the high-expression 
group showed a significantly enriched hub gene 
with blue bars. In contrast, the green bars indi-
cate the pathways significantly enriched in the 
low-expression group of hub genes. A summary 
of GSEA analysis result are shown in Table III 
and Supplementary Figure 2.

Developing the PPI Network Analysis 
Underlying the FDSCP

The PPI network constructed with SDEGs and 
STRING database is shown in Figure 5 A. The 
results showed that the PPI network contains 129 
nodes and 516 interactions. The color of each node 
represents the node degree for each gene. Color 
red and green indicate a high and low degree of 
node, respectively. Five hub genes were screened 
with MCODE (Figure 5 B) and cytoHubba (Fig-
ure 5 C) plug-in in Cytoscape software. Addition-
ally, FDSCP gene -miRNA interaction network is 
shown in Figure 5 D, color red indicates FDSCP 
gene, and the color blue represents miRNA inter-
acting with FDSCP gene (752 nodes in total).

Figure 2. Differential expression profiles and PCA analysis on GSE59733 dataset of pre- and post-radiotherapy. A, Heat-map 
overview of the differentially expressed genes. Red and blue color represent high and low expression level of genes, respec-
tively. B, Volcano plot of DEGs in GSE59733 dataset. Red and green color indicate relatively higher and lower gene expression 
levels, respectively. C, Principal component analysis on gene expression profiles of GSE59733 dataset. Red and blue color 
represent pre and post-radiotherapy, respectively.

https://www.europeanreview.org/wp/wp-content/uploads/SUPPLEMENTARY-FIGURE-1A-H.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SUPPL-FIGURE-2A-E.pdf
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Evaluation of Hub Genes and Associated 
Diagnostic Markers and Immune Infiltration 

The composition and abundance of 22 kinds of 
immune cells with CIBERSORT method are vi-
sualized in a heatmap and histogram plot. There 
were statistically significant differences in the in-

filtration rate of immune cells between the group 
with high expression of the FDCSP gene and the 
group with low expression (Figure 6 A-D). Memo-
ry-activated CD4+ T cells show the strongest neg-
ative correlation with Gamma-delta (γδ) T cells 
and macrophages M0, whereas it was positively 

GO-BP

ID Description Count in gene set  p-value

GO:0048545 response to steroid hormone 18 7.79E-09
GO:0000302 response to reactive oxygen species 14 1.66E-08
GO:0051384 response to glucocorticoid 11 6.35E-08
GO:0022612 gland morphogenesis 10 9.93E-08
GO:1901654 response to ketone 12 1.32E-07
GO:0031099 regeneration 12 1.74E-07
GO:0031960 response to corticosteroid 11 1.84E-07
GO:0097193 intrinsic apoptotic signaling pathway 14 2.54E-07
GO:0032355 response to estradiol 10 2.81E-07
GO:0048660 regulation of smooth muscle cell proliferation 11 2.82E-07

GO-CC

ID Description Count in gene set p-value

GO:0062023 collagen-containing extracellular matrix 19 1.46E-09
GO:0031983 vesicle lumen 13 5.80E-06
GO:0060205 cytoplasmic vesicle lumen 12 2.87E-05
GO:0034774 secretory granule lumen 11 8.53E-05
GO:0030055 cell-substrate junction 12 0.000188
GO:0005925 focal adhesion 11 0.000626
GO:0005924 cell-substrate adherens junction 11 0.000665
GO:1904724 tertiary granule lumen 4 0.001157
GO:0005604 basement membrane 5 0.00122
GO:0045111 Intermediate filament cytoskeleton 8 0.001273

GO-MF

ID Description Count in gene set p-value

GO:0001085 RNA polymerase II transcription factor binding 8 5.31E-05
GO:0005201 extracellular matrix structural constituent 8 7.58E-05
GO:0008083 growth factor activity 8 7.58E-05
GO:0008201 heparin binding 8 9.76E-05
GO:0005539 glycosaminoglycan binding 9 0.000149
GO:0019838 growth factor binding 7 0.000168
GO:0004714 transmembrane receptor protein tyrosine kinase 

activity
5 0.000179

GO:0043394 proteoglycan binding 4 0.000237
GO:0048018 receptor ligand activity 13 0.000238
GO:0042379 chemokine receptor binding 5 0.000241

Table I. GO enrichment analysis results. 
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Figure 3. FDCSP gene expression profiles before and after radiotherapy and ROC curve. A, Changes in FDSCP gene expres-
sion before and after radiotherapy. B, The ROC curve analysis of FDSCP gene.

Figure 4. Results of gene set enrichment analysis (GSEA). A, Gene set enrichment analysis indicates SMID_ BREAST_ CAN-
CER_ LUMINAL_ B_ DN signaling pathways are enriched in breast cancer. B, Gene set enrichment analysis indicates SMID_ 
BREAST_ CANCER_ BASAL_ The up pathway is enriched in breast cancer. C, Gene set enrichment analysis indicates that 
Nuytten_ EZH2_ TARGETS_ The up pathway is enriched in breast cancer. D, Gene set enrichment analysis indicated that Lei_ 
MYB_ The targets pathway is enriched in breast cancer.
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ID Description Count in gene set p-value

hsa04657 IL-17 signaling pathway 8 1.38E-05
hsa05323 Rheumatoid arthritis 7 0.000108
hsa04010 MAPK signaling pathway 12 0.000168
hsa05417 Lipid and atherosclerosis 10 0.000214
hsa04915 Estrogen signaling pathway 8 0.000216
hsa05166 Human T-cell leukemia virus 1 infection 10 0.000248
hsa04668 TNF signaling pathway 7 0.000344
hsa04151 PI3K-Akt signaling pathway 12 0.000904
hsa05150 Staphylococcus aureus infection 6 0.000924
hsa01522 Endocrine resistance 6 0.001029
hsa04657 IL-17 signaling pathway 8 1.38E-05
hsa05323 Rheumatoid arthritis 7 0.000108

Table II. KEGG enrichment analysis

ID NES p.adjust qvalues

SMID_BREAST_CANCER_LUMINAL_B_DN -2.591 0.0193 0.0124
SMID_BREAST_CANCER_BASAL_UP -2.740 0.0193 0.0124
NUYTTEN_EZH2_TARGETS_UP -2.154 0.0193 0.0124
LEI_MYB_TARGETS -2.226 0.0193 0.0124

Table III. Results of gene set enrichment analysis (GSEA)

Characteristic Level High-FDCSP Group (n=456) Low-FDCSP Group (n=456) Overall (N=913)
Age

Mean (SD) 56.3 (12.4) 59.0 (13.3) 57.7 (12.9)
Median [Min, Max] 56.0 [26.0, 90.0] 59.0 [26.0, 90.0] 58.0 [26.0, 90.0]

T stage
T1 130 (28.5%) 106 (23.2%) 236 (25.8%)
T2 261 (57.2%) 281 (61.5%) 542 (59.4%)
T3 57 (12.5%) 45 (9.8%) 102 (11.2%)
T4 8 (1.8%) 25 (5.5%) 33 (3.6%)

N stage
N0 230 (50.4%) 224 (49.0%) 454 (49.7%)
N1 150 (32.9%) 151 (33.0%) 301 (33.0%)
N2 49 (10.7%) 54 (11.8%) 103 (11.3%)
N3 27 (5.9%) 28 (6.1%) 55 (6.0%)

M stage
M0 451 (98.9%) 445 (97.4%) 896 (98.1%)
M1 5 (1.1%) 12 (2.6%) 17 (1.9%)

Gender
female 454 (99.6%) 448 (98.0%) 902 (98.8%)
male 2 (0.4%) 9 (2.0%) 11 (1.2%)

Stage
stage i 86 (18.9%) 74 (16.2%) 160 (17.5%)
stage ii 265 (58.1%) 270 (59.1%) 535 (58.6%)
stage iii 100 (21.9%) 101 (22.1%) 201 (22.0%)
stage iv 5 (1.1%) 12 (2.6%) 17 (1.9%)

Table IV. Clinicopathological characteristics of high and low FDCSP  gene groups in TCGA breast cancer patients.



W.-C. Dan, X.-Y. Guo, G.-Z. Zhang, S.-L. Wang, M. Deng, J.-L. Liu 

264

FDCSP Immunohistochemistry and Tissue 
Expression Analysis

The expression of FDCSP gene was analyzed based 
on HPA and GEPIA databases. Gene expression of 
various organs and immunohistochemistry of normal 
tissues and breast cancer tissues can be seen in HPA 
database (Figure 7 A), and gene expression of various 
tissues can be seen in GEPIA database (Figure 7 B). 
Additionally, the ROC results of the FDCSP gene in 
the GSE71053 dataset revealed that the FDCSP gene 
effectively distinguished breast cancer tumor tissues 
from normal tissues (AUC = 0.704) (Figure 7 C).

Construction of a Hub Genes-Based 
Prognostic Model

The baseline data sheets of the patients are 
shown in Table IV. Eleven associated prognosis 
SDEGs were identified by performing a univar-
iate cox analysis with all SDEGs (Figure 8 A). 

correlated with resting dendritic cells and macro-
phages M1. 

The Violin plot exhibited the immune infiltration 
subpopulations correlated profiles. Native B cell, T 
cell CD8+, memory-activated T cell CD4+, T follicu-
lar helper cell, Gamma-delta (γδ) T cell, resting NK 
cell, Macrophage M0, Macrophage M1, activated 
myeloid dendritic cell, and Neutrophil shared higher 
proportion in high FDCSP expression group. On the 
contrary, the proportion of memory B cells, plasma 
B cells, naive CD4+ T cells, activated Mast cells, 
activated NK cells, and regulatory T cells (Tregs) 
are lower. Furthermore, we analyzed the correlation 
between hub genes (EGFR, ESR1, FOS, IL6, and 
JUN) based on the GSE59733 dataset and immune 
cell infiltration in BRCA tissues. Significant differ-
ences among various subtype immune cells were 
found between the group with high expression of 
the FDCSP gene and the group with low expression 
(Supplementary Figure 3). 

Figure 5. PPI networks of SDEGs and FDSCP gene-miRNA . A, PPI networks of the SDEGs; (B) Hub genes screened by 
MCODE plug-in; (C) Identification of the hub genes by cytoHubba plug-in. D, FDCSP gene-miRNA interaction network.

https://www.europeanreview.org/wp/wp-content/uploads/SUPPL-FIGURE-3A-F.pdf
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Figure 6. Immune cell infiltration evaluation and visualization of GSE59733 dataset. A, Proportion of the 22 immune cell types 
in BRCA tissues. B, Correlation matrix between the 22 immune cell types. Green represents positive correlation, and brown 
represents negative correlation.

Figure continued

A

B
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Figure 6 (Continued). C, Heatmatablep of immune cell infiltration between high and low FDCSP gene expression groups. D, 
Violin map of immune cell proportion in high FDCSP expression group (blue) and low FDCSP expression group (red).

C

D
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The lasso regression algorithm (Figure 8 B-C) 
and SVM algorithm (Figure 8 D-E) were used to 
identify potential diagnostic markers. 11 genes 
were screened from SDEGs as diagnostic mark-
ers using the lasso regression algorithm. The 
SVM algorithm was used to identify 11 genes as 
diagnostic markers. These candidate diagnostic 
markers identified by the two methods complete-
ly overlapped, and 11 associated diagnostic genes 
were obtained. To further test the effectiveness 
of the diagnosis, 7 genes were identified (Figure 
8 G), and multivariate cox analysis on the TC-
GA-BRCA training dataset was to construct a 
predicted prognostic model. We further validated 
the predicted prognostic model on the validation 
dataset and all datasets (Supplementary Figure 
4). Table V shows the results of univariate and 
multivariate cox analysis.

Nomogram 
Univariate (Figure 9 A) and multivariate (Fig-

ure 9 B) cox analysis was used to analysis on 

clinical features (risk score, age, tumor stage, N 
stage, T stage and M stage). The results revealed 
that risk score, age and M stage were associated 
with the prognosis of patients in TCGA. There-
fore, based on the TCGA-BRCA training data-
set, we developed a nomogram to predict overall 
patient survival at 3 and 5 years. The calibration 
curve and ROC curve results show that patients’ 
estimated survival probabilities at 3 and 5 years 
are consistent with the actual probabilities (Fig-
ure 9 C-E).

Discussion

The radiotherapy process of breast cancer pa-
tients is heterogeneous47,48, which significant-
ly impacts clinical efficacy and quality of life. 
Therefore, there is an urgent need to find radia-
tion-associated biomarkers for breast cancer’s 
early diagnosis and prognosis. In addition, radio-
therapy-related biomarkers enable BC patients to 

Figure 7. The expression analysis of FDCSP gene in HPA and GEPIA database. A, FDCSP gene expression in HPA and its 
immunohistochemical map in breast cancer normal tissues and tumor tissues. B, FDSCP gene expression profile in GEPIA. C, 
ROC curve of breast cancer from normal tissue and tumor tissue predicted by FDCSP gene in GSE71053 dataset.

https://www.europeanreview.org/wp/wp-content/uploads/SUPPL-FIGURE-4A-L.pdf
https://www.europeanreview.org/wp/wp-content/uploads/SUPPL-FIGURE-4A-L.pdf
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receive more personalized targeted immunother-
apy. Similar improvements in personalized radio-
therapy have not been applied clinically. Hence, 
researchers are increasingly looking for new di-
agnostic biomarkers and studying the components 
of breast cancer immune cell infiltration that may 
positively impact the clinical outcome of breast 
cancer patients. In this study, we performed an 
integrated analysis of TCGA transcriptome data 
and clinical data of breast cancer to identify effec-
tive diagnostic biomarkers for breast cancer.

In the present study, two BC datasets were 
downloaded from GEO, and a total of 341 DEGs 
(183 up- and 158 down-regulated genes) were iden-
tified using cross-validation. The GO and KEGG 
enrichment analyses showed that the DEGs were 
associated with various cancer-related functions 
and pathways, such as steroid hormone, reactive 
oxygen species and glucocorticoids. Steroid re-
ceptors (SRs) are subjected to many post-trans-
lational modifications by the reversible addition 
of various molecular parts, including phosphor-
ylation, acetylation, methylation, glycosylation 
and ubiquitination. Active oxygen is generated in 
mitochondria, peroxisome and the endoplasmic 
reticulum. ROS are generated after radiotherapy 
in breast cancer. Glucocorticoids play an essential 

role in embryonic development and tissue homeo-
stasis and possess important anti-inflammatory 
and immunosuppressive properties. These func-
tional abnormalities will lead to abnormal phys-
iological functional pathways, including those 
related to genetics/genomics, oxidative stress, 
neuroplasticity and inflammation.

Furthermore, the top 20 hub genes associated 
with breast cancer, identified in the PPI network 
based on STRING database, showed high func-
tional similarity and diagnostic values for breast 
cancer. PPI network analysis using the STRING 
database showed several effective central genes. 
Biological process, cell component and molecular 
function also evaluated the enrichment pathway. 
Survival analysis further supported the robust-
ness of the above results.

With the development of next-generation se-
quencing technologies and the prognosis effects 
of radiotherapy, transcriptome research on ra-
diation-related breast cancer have been carried 
out. For instance, in a study based on the origi-
nal breast cancer dataset GSE59733 from GEO, 
82 DEGs were identified, and FOS, CCL2, and 
CXCL12 were strongly proposed as hub genes49. 
Another bioinformatics analysis of breast cancer 
gene expression profiles in GSE1561 datasets and 

Univariate Cox analysis

Gene HR z p-value lower upper

CCDC3 1.26 4.66 0.00 1.14 1.39
METTL7A 1.32 3.82 0.00 1.14 1.52
DDIT4 0.85 -3.11 0.00 0.77 0.94
BCL2A1 0.86 -3.01 0.00 0.78 0.95
NFIL3 1.18 2.72 0.01 1.05 1.32
KCTD12 1.17 2.58 0.01 1.04 1.32
C11orf96 1.14 2.55 0.01 1.03 1.26
EGR1 1.09 2.17 0.03 1.01 1.17
HSPA6 0.89 -2.10 0.04 0.80 0.99
SERPINA11 0.95 -2.09 0.04 0.90 1.00
THBS1 1.12 2.01 0.04 1.00 1.25
Multivariate Cox analysis

Id coef HR HR.95L HR.95H p-value
EGR1 -0.09 0.91 0.81 1.02 0.11
THBS1 0.10 1.11 0.97 1.27 0.13
BCL2A1 -0.24 0.79 0.69 0.90 0.00
NFIL3 0.30 1.35 1.12 1.62 0.00
DDIT4 -0.19 0.83 0.73 0.94 0.00
SERPINA11 -0.09 0.91 0.86 0.97 0.00
C11orf96 0.18 1.20 1.04 1.38 0.01

Table V. Results of Univariate Cox analysis and Multivariate Cox analysis.
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Figure 8. LASSO, SVM, Univariate and multivariate cox regression algorithms for identifying independent prognostic factors. A, Univariate cos regression of the 11 
screened prognosis-associated genes. B-C, LASSO coefficient profiles of the 11 hub genes, in which the lowest cross-validation error rate is the best predictors of the 
model. D, SVM performance accuracy. E, SVM performance error. F, Venn plot showing hub genes identified in common by the lasso and SVM algorithms. G, Forest 
map of multivariate cox regression for 11 diagnostic genes, 7 genes were obtained for establishing prediction prognostic model.



W.-C. Dan, X.-Y. Guo, G.-Z. Zhang, S.-L. Wang, M. Deng, J.-L. Liu 

270

Figure 9. Nomogram construction and verification. A, Univariate Cox regression analysis of clinical characteristics for overall 
survival in the breast cancer. B, Multivariate Cox regression analysis of clinical characteristics for overall survival in the breast 
cancer. C, Calibration plot of the nomogram. D, The nomogram consists of risk score, age, and stage. E-F, Nomogram validation 
of 3-year and 5-year ROC curve.
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five hub genes (CCNB2, FBXO5, KIF4A, MCM10, 
and TPX2) were identified as potential biomark-
ers associated with breast cancer prognosis50. 
Compared with these published similar studies, 
the present study has some advantages: First, we 
employed the limma package to screen radiation 
differentially expressed genes (RDEGs) between 
pre-radiation tumor samples and post-radiation 
tumor samples from the GSE59733 dataset. To 
our knowledge, radiation-related transcriptomic 
expression has not been analyzed for breast can-
cer. Secondly, Two machine learning algorithms, 
SVM and Lasso Rogers regression were further 
used to screen the diagnostic markers. Two ma-
chine learning algorithms could build a more pre-
cise classification model with feature variables. 
These features ensured the credibility of our re-
sults.

We screened five hub genes (EGFR, ESR1, 
FOS, IL6, and JUN) from the PPI network in the 
present study. According to existing studies, the 
hub genes play key roles in various cancer-related 
biological processes. FOS is one of five hub genes. 
FOS plays a critical role in the development and 
progression of breast cancer by mediating the 
transcription of AP-1 target genes51. Nonetheless, 
few studies reveal the response of FOS in breast 
cancer to radiation49. In our analysis, FOS was 
one of the hub proteins with the highest interac-
tion in the PPI network. Thus, whether altering its 
gene expression may affect the response of breast 
cancer to radiation is still an urgent problem to 
be studied in-depth. Another hub gene ESR1 was 
identified as potential prognostic biomarkers for 
breast cancer and is expressed by several types of 
cancer52. It is reported that mutations of the ESR 
1 gene is a prognostic factor related to low surviv-
al rate. Previous studies have reported that mu-
tation of ESR 1 could affect hormone resistance 
and reduce the therapeutic response53,54. The most 
important diagnostic markers with the highest de-
gree of connection among the central genes were 
selected. Kaplan-Meier plotter with p-value < 0.05 
was used to verify the recurrence-free survival 
rate of hub genes. Furthermore, we also analyzed 
the correlation between hub genes (EGFR, ESR1, 
FOS, IL6, and JUN) and the infiltration of im-
mune cells in BRCA tissue using the GSE59733 
dataset. Significant differences exist among the 
immune cells of each subtype of the FDCSP gene 
expression group. 

In addition, the Lasso-Rogers regression and 
support vector machines (SVG) were further 
used to screen and identify potential diagnostic 

markers. 11 genes were obtained from SDEGs 
using the lasso regression algorithm as diagnos-
tic markers. Finally, according to the identified 
gene biomarkers, the available evidence is ob-
tained from the reported experimental literature 
on breast cancer. In addition, our analysis shows 
that the nomogram has a good calibration effi-
ciency. The ROC results of the FDCSP gene in 
the GSE71053 dataset revealed that the FDCSP 
gene could effectively distinguish breast cancer 
tissue from normal tissue. The candidate genes 
THBS1, SERPINA11, NFIL3, METTL7A, KCTD12, 
HSPA6, EGR1, DDIT4, CCDC3, C11orf96, and 
BCL2A1 in breast cancer cells after radiotherapy 
were verified. These genes can be used as poten-
tial prognostic biomarkers and therapeutic targets 
for breast cancer, but more evidence is needed to 
support the basis of computational analysis biol-
ogy.

Limitations
The limitations of our research should also be 

acknowledged. First of all, in analyzing the DEGs, 
it is difficult to consider some important factors, 
for example, different ages, races, regions, tumor 
stages and patient classification, because of the 
complexity of the data set in our study. Secondly, 
according to the results, the five hub genes were 
up-regulated in breast cancer, but the mechanism 
of up-regulation was unclear. Third, the sample 
size of breast cancer radiotherapy is quite low and 
more evidence is needed to understand the biolog-
ical basis. Finally, this study mainly focuses on 
analyzing the expression levels and OS of five hub 
genes. Whether these hub genes could be used as 
biomarkers or improve breast cancer’s diagnostic 
accuracy and specificity needs further study. We 
will collect more relevant samples in future clini-
cal trials and design prospective trials to improve 
the statistical power and achieve more meaning-
ful results.

Conclusions

The present study has identified several key 
genes (EGFR, ESR1, FOS, IL6, and JUN) that 
might be considered novel and potential breast 
cancer biomarkers. These results may provide a 
novel understanding of the prognosis effects of 
radiotherapy on breast cancer, identifying several 
potential biomarkers for its diagnosis and treat-
ment.
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