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Abstract. – OBJECTIVE: To explore the role
of ∆∆133p53 in the effect of recombinant mutant
human Tumor Necrosis Factor (rmhTNF) on two
gastric cancer cell lines.

MATERIALS AND METHODS: MKN45 (with
∆∆133p53 expression) or SGC7901 (without
∆∆133p53 expression) cells were treated with
rmhTNF of different concentrations only or
combined with fluorouracil (5-FU), and the
growth inhibition rate was detected by a cell
counting kit, and apoptosis by flow cytometry.
The mRNA of ∆∆133p53, p53, Gadd45αα, MDM2,
PTEN and Bax was measured by reverse tran-
scription PCR (RT-PCR) or Nested PCR (nPCR).

RESULTS: On ∆∆133p53-positive MKN-45 cells,
the effect of rmhTNF was significant in growth
inhibition test (t = –9.558, p < 0.01); also, the ef-
fect of 5-FU was improved by rmhTNF with re-
markable time- and dose-effect (F = 82.742, p <
0.01; F = 128.583, p < 0.01). However, on
∆∆133p53-negative SGC-7901 cells, no growth in-
hibition was showed by rmhTNF only (t = –
0.121, p > 0.05). In apoptosis test, the effect of
rmhTNF was significant on MKN45 cells, and
the effect of 5-FU was improved significantly by
rmhTNF (F = 123.931, p < 0.05). In mRNA mea-
surement, rmhTNF-induced up-regulation of
p53 accompanied with down-regulation of
∆∆133p53, which correlated significantly to the
change of p53 downstream molecules, includ-
ing MDM2, PTEN, Gadd45αα, and Bax.

CONCLUSIONS: The results in these experi-
ments suggested that ∆∆133p53 play a pivotal
role in rmhTNF-induced survival of p53 func-
tions in ∆∆133p53-positive MKN-45 cells. 
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Introduction

p53 has been regarded as the guardian of the
genome, and its inactivation contributes to tumors
of various tissues1. The inactivation of p53 may be
caused not only by mutations or deletions of tu-
mor protein53 (TP53) gene, but also by the alter-
native splicing2,3. At least ten p53 isoforms were
discovered, and some were reported to appear in
different tissues, including various types of nor-
mal, precancerous, and malignant tissues4-16.
These isoforms working together with wild-type
p53 or other pathways involve in the process of tu-
morigenesis17-25. Though mutations of p53 were
popular in gastric cancer, it was yet unclear about
the relationship between these mutations and gas-
tric cancerogenesis26. Recently, expression pattern
of ∆133p53 and p53β was testified in various gas-
tric tissues in our department: up-regulation of
∆133p53 and down-regulation of p53β accompa-
nied with the process of chronic inflammation to
tumorigenesis. The link among p53 isoforms, He-
licobacter pylori (Hp)-related inflammation and
gastric carcinoma was firstly reported by Wei et
al27, which suggested that ∆133p53 involve in the
process of Hp-related chronic inflammation to
gastric carcinoma. Therefore, ∆133p53, as one of
the hopeful p53 isoform, might be a good target
for diagnosis, therapy and prognosis of gastric car-
cinoma.
To testify the role of ∆133p53 in gastric carci-

noma, two gastric cancer cell lines (MKN45 with
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∆133p53 expression and SGC7901 without
∆133p53 expression) were interfered by rmhTNF
– an inhibitor of inflammation and tumors –
alone or combining with 5-FU. The expression of
∆133p53, p53 and four p53 downstream mole-
cules (MDM2, PTEN, Bax and gadd45α) was
analyzed to explore the possible mechanism.

Materials and Methods

Gastric Cancer Cell Lines
SGC-7901 gastric cancer cell line was stored

in our laboratory. MKN45 gastric cancer cell line
was offered by Dr. Wang Xin (State Key labora-
tory of Oncology, Xijing Hospital, Fourth Mili-
tary Medical University, Xi’an, China). These
cell lines had been passaged four times at the
time of harvesting for RNA isolation. All human
cell lines were cultured in remodified HyClone
RPMI-1640 medium (NZD1133, Beijing Corpo-
ration, Thermo Fisher Scientific Inc., Waltham,
MA, USA) with 5% HyClone fetal bovine serum
(FBS, NVD0250, Beijing Corporation, Thermo
Fisher Scientific Inc., USA) and maintained in
exponential growth at 37°C and 5% CO2.

Cell Growth Inhibition Measurement
MKN-45 and SGC-7901 cells were digested,

harvested and planted in 96-well plate with the
density of 5×104 cells/mL. Two doses of rmhTNF
(50 or 500 IU/mL) alone or combined with 5-FU
(25 µg/mL) were added to different wells, incu-
bated for 24, 48, and 72 hours respectively, then
the supernatant was replaced by fresh culture
medium with cell counting kit (CCK-8, Lot num-
ber 105215, Yesen Biotechnology Scientific Inc.,
Shanghai, China) agent at the ratio of 10:1 and
cells were incubated for another hour. The OD
value at the wavelength of 450 nm was measured
by ELISA microplate reader (Bio Tek Power
Wave XS, Bio-Rad Laboratories Inc., Hercules,
CA, USA). The growth inhibition rate was calcu-
lated and recorded.

Apoptosis Flow Cytometry 
MKN-45 cells of each group were digested in

exponential phase, collected and regulated to the
concentration of 1×106 cells/mL, then 5 µL An-
nexin V-FITC and 5 µL PI were added to 100 µL
cell suspension. The contrast groups were de-
signed to add Annexin V-FITC or PI only. The
apoptosis was measured by Flow Cytometry
(BD, Franklin Lakes, NJ, USA).

RT-PCR and nPCR
A series of keys was used in total RNA isola-

tion, cDNA synthesis, and PCR amplification.
RNA was isolated from snap frozen tumor tissue.
The concentration of total RNA was determined
by spectrophotometer (EV0300, Thermo Electron
Corporation, Waltham, MA, USA). M-MuLV first
chain synthesis key (Sangon Biotech Shanghai
Co., Ltd., Shanghai, China) was used in reverse
transcription (RT) of RNA. A 20 µL reaction con-
tained the following: 4 µL of 25 mM MgCl2 solu-
tion; 2 µL of 10×PCR Buffer II; 1 µL of H2O; pre-
mixed deoxyribonucleoside triphosphates: 2 µL of
dGTP, 2 µL of dATP, 2 µL of dTTP, 2 µL of dCTP
(10 mM each), 1 µL of RNA inhibitor (20 U/µL);
1 µL of random hexamers; and 1 µL of MuLV re-
verse transcriptase as a master mix. Approximate-
ly 2 µL of total RNA was added prior to the start
of reaction. On the basis of a previous photometric
measurement, the total RNA template concentra-
tion was below the reaction capacity of ≤1 µg of
RNA per reaction. The following adapted time and
temperature profiles for the RT were used: incuba-
tion for 10 min at 25°C, 30 min at 42°C for RT of
RNA, 5 min at 95°C for denaturation, and 5 min at
5°C to cool down the reaction. Negative controls
were added to ensure contamination-free consum-
ables for the RT reaction in each series of cDNA
reactions. Subsequently, the RT reaction samples
underwent 1:4 dilution to obtain a final concentra-
tion of 10 ng/µL of cDNA. RT-PCR reaction was
under the guidelines of the PCR Amplification
Key (Biotechnology Engineering Inc., Dalian,
China) in a final volume of 25 µl under the follow-
ing conditions: 35 cycles at 94°C for 1 min, 58°C
for 50 s, and 72°C for 1 min. For ∆133p53, nPCR
was performed as follows: the outer primers were
used in the first PCR reaction, 2 µl product by first
amplification and inner primers was used in the
second reaction, and the conditions of both reac-
tions were just the same as mentioned above.
Primers for the mRNA of ∆133p53, p53,
Gadd45α, Bax, PTEN, MDM2 and β-actin were
shown in Table I. The PCR product was run in 1%
agarose electrophoresis under the level elec-
trophoresis apparatus (Gulf Gene Group Compa-
ny, USA). The PCR result was scanned and ana-
lyzed by the Biospectrum AC Gel Imaging System
(Alpha Innotech Corporation, San Leandro, CA,
USA).

Statistical Analysis
The experimental data was analyzed by

SPSS16.0 Statistical Software Package (SPSS
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Figure 1. Inhibition effect of rmhTNF on MKN-45 and
SGC-7901 cells. Data measured on 24 hours after rmhTNF
treatment.

Results

Growth Inhibition of rmhTNF on 
Gastric Cell Lines
In Figure 1, the growth inhibition of rmhTNF

at 24 hours after treatment was remarkable in
∆133p53-positive MKN cells with dose-depen-
dent manner (t = –9.558, p < 0.01), but insignifi-
cant in ∆133p53-negative SGC-7901 cells (t = –
0.121, p > 0.05). The effect of 5-FU was im-
proved by rmhTNF with remarkable time- and
dose-effect manner in MKN cells (F= 82.742, p
< 0.01; F= 128.583, p < 0.01; Figure 2A);
though no growth inhibition was showed by
rmhTNF only in SGC-7901 cells, rmhTNF was
able to enhance 5-FU-induced growth inhibition
in both concentration with time- but not dose-de-
pendent manner (Figure 2B).

Pro-apoptotic Effect of rmhTNF 
on MKN-45 cells
In twenty-four-hour treatment, the result of

Flow Cytometry was showed that the apoptotic
percentages were 7.15±0.94%, 10.11±0.64%,
and 14.57±1.37%, respectively, in 50 IU/mL
rmhTNF, 50 IU/mL rmhTNF + 25 µg/mL 5-FU,
and 50 IU/mL rmhTNF + 25 µg/mL 5-FU group,
and the difference was significance (Figure 3).

Inc., Chicago, IL, USA). The difference among
groups was testified by one-way analysis of vari-
ance, while LSD-t test was used to analyze the
group-to-group difference. Pearson linear corre-
lation analysis was performed to testify the rele-
vance between ∆133p53 and p53 downstream
genes. p < 0.05 was considered as the signifi-
cance difference.

Primers Primer sequence (5’-3’) Length  (bps)

∆133p531 Outer primer F: CTGAGGTGTAGACGCCAACTCTCTCTAG 750
R: TGTCAGTCTGAGTCAGGCCCTTCTGTC

Inner primer F: GCTAGTGGGTTGCAGGAGGTGCTTACGC
R: CTCACGCCCACGGATCTGA

p53 F: GGTCTCCTCCACCGCTTCTTGTC 690
R: GGCCTCATCTTGGGCCTGTGT 

Gadd45α F: CGAAAGGATGGATAAGGTG 197
R: GGATCAGGGTGAAGTGGA

PTEN F: AGTTCCCTCAGCCGTTACCT 436
R: GGATCAGAGTCAGTGGTGTCAG

Mdm2 F: CGCGGGAGTTCAGGGTAAAG 237
R: AGCTGGAGACAAGTCAGGACTTAAC

Bax F: ACCAAGAAGCTGAGCGAGTGTC 365
R: ACAAAGATGGTCACGGTCTGCC
R: GGATTCGGTGGTAGACTT

β-actin F: GTGGGGCGCCCCAGGCACCA 539
R: CTCCTTAATGTCACGCACGATTTC

Table I. Primers in this experiment.

Note: 1 amplified by nested PCR. F: forward primer; R: reverse primer.
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Effects of rmhTNF on ∆∆133p53, p53 and
p53 Downstream Molecules in MKN Cells
In twenty-four-hour rmhTNF intervention, the

result of PCR indicated that ∆133p53 mRNA
was lowered, but p53 mRNA increased remark-
ably. Accompanying with that, the mRNA of p53
downstream molecules changed; in detail, mR-
NA of MDM2 decreased, while that of PTEN,
BAX and Gadd45α declined. All these changes
were significant with dose-dependent manner
(Figure 4). The result in figure 5 showed that the
expression of ∆133p53 was correlated negatively
to that of Gadd45α, PTEN and BAX (rB = –
0.894, pB < 0.01; rC = –0.872, pC < 0.01; rD = –
0.971, pD < 0.01), but did positively to that of
MDM2 (r  = 0.924, p < 0.01).

Discussion

Gastric carcinogenesis was accepted as a mul-
tiple-step process with accumulating genetic al-

terations, in which the loss of p53 function plays
a pivotal role. The mutation and deletion of TP53
gene in gastric carcinoma and cell lines were re-
ported in details1,20; however, rare research fo-
cused on p53 isoforms in gastric diseases. In re-
cent years, meaningful discoveries had been
coming out and indicated that p53 isoforms in-
volve in the process of gastric tumorigenesis. 

∆133p53, one of the isolated prognostic indica-
tors in invasive ovarian carcinoma8-10, was also de-
tected and worked as a negative inhibitor against
wild-type p53 in breast cancer5-7. Previous unpub-
lished study in our group showed that the positive
rates of ∆133p53 mRNA were 75% (15/20) in
gastric adenocarcinoma, 50% (15/30) in atrophic
gastritis, 25% (5/20) in superficial gastritis and
20% (3/15) in para-cancerous tissue; the differ-
ence was significant. Expression status of
∆133p53 was also testified in two gastric cancer
cell lines, which was positive in MKN45 cells, but
negative in SGC7901. Moreover, it was proved by

Figure 2. Combining inhibition effect of rmhTNF and 5-Fu on MKN-45 and SGC-7901 cells. Note: concentration of 5-
FU: 25 µg/mL.

Figure 3. Combining pro-apoptotic effect of rmhTNF and 5-FU on MKN-45 cells. A, Blank control; B, rmhTNF (50
IU/mL); C, rmhTNF (50 IU/mL) + 5-FU (25 µg/mL); D, rmhTNF (500 IU/mL) +5-FU (25 µg/mL); E, histogram of apopto-
sis measured by Flow Cytometry. mean α ± average, n = 3. *p < 0.05, **p < 0.01.
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in MKN45 cells. The function of p53 is finely
controlled by PTEN-MDM2 loop29,30, and
∆133p53 isoform clearly involved in this regula-
tory loop: ∆133p53 expression correlated posi-
tively to MDM2, but negatively to PTEN. Inter-
estingly, this result suggested that rmhTNF-in-
duced survival of p53 functions was caused by
the blockade of ∆133p53 (Figure 6).

Conclusions 

To be summed up, the results in these experi-
ments suggested ∆133p53 a pivotal point in
rmhTNF-induced survival of p53 functions in
∆133p53-positive MKN-45 cells. Historically, no
ideal target was clinically applied in the diagnos-
tics and therapeutics of gastric carcinoma, but
this original work suggested ∆133p53 a good al-
ternative and worth further exploration. Surely,
tremendous work was required to build up a con-
venient diagnostic method, screen patients, and
design new drugs and regimens as well.
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Wei et al27 that ∆133p53 acted as an anti-apoptotic
inducer in the process of Hp-related gastric in-
flammation to carcinoma. However, more work
was required to decipher the hiding story before
∆133p53 becoming a target of diagnostics, thera-
peutics and prognostics in gastric carcinoma. 
In these experiments, ∆133p53 positive or

negative gastric cancer line cells were interfered
with rmhTNF alone or combining with 5-FU.
rmhTNF were able to induce the growth inhibi-
tion and enhance the inhibition effect of 5-FU in
∆133p53 positive MKN45 cells; while the same
effect was not shown in ∆133p53 negative
SGC7901 cells: rmhTNF was unable to induce
the growth inhibition of SGC7901 cells alone,
but enhance the inhibition effect of 5-FU. In
apoptotic analysis, it was showed that rmhTNF
was able to induce the apoptotic reaction alone,
and enhance the apoptotic effect of 5-FU as well. 
In rmhTNF-treated MKN45 cells, the expres-

sion of p53 and its function of growth inhibition
and apoptosis revived. The apoptotic pattern was
shown by p53 downstream molecules, including
MDM2, PTEN, BAX and Gadd45α, which var-
ied relatively with ∆133p53. Previously,
∆133p53 was proved to work as an anti-apoptotic
factor in various tumors9,28. The result in this ex-
periment indicated that ∆133p53 might reverse
p53 functions of growth inhibition and apoptosis

Figure 4. Effect of rmhTNF on ∆133p53, p53 and p53 downstream molecules in MKN cells. Samples collected 24 hours
after rmhTNF treatment. (1) Blank control; (2) rmhTNF (50 IU/mL), (3) rmhTNF (500 IU/mL). ± s, n = 3. *p < 0.05, **p
< 0.01.
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