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Metabolic signaling of insulin secretion
by pancreatic 3-cell and its derangement
in type 2 diabetes
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Abstract. Pancreatic p-cell is responsible
for insulin secretion in response to the avail-
ability of nutrients. Type 2 diabetes mellitus
(T2D) is the result of pancreatic B-cell failure
to supply sufficient amount of insulin accom-
panied with decreased sensitivity of the body
tissues to respond to insulin. The insulin se-
cretion apparatus of p-cell is uniquely
equipped with multiple metabolic and signal-
ing steps that are under rigorous control. The
metabolic machinery of p-cell is designed to
sense the fluctuations in blood glucose devel

and supply insulin accordingly to the ne bonse to the levels and stimulus strength of nu-
body. Besides glucose, amino acids inc dyhormonal factors. The insulin secretion
glutamine and leucine and also fatty acid . . . .
known to either stimulate the p-cells dird : of B-cells is uniquely equipped with
or potentiate the glucose stimulated ins multiple metabolic and signaling steps that are un-
secretion (GSIS) response. der rigorous control. The glucose response of {3-
lism dependent GSIS is I| cell to secrete insulin is considered to be highest in
comparison to other calorigenic nutrient secreto-
gogues*®. Thus, the metabolic machinery of p-cell
is designed to sense the fluctuations in blood glu-
cose level and supplies insulin accordingly to the
the optimal gluc, needs of the body®¢. Besides glucose, some amino
crete insulin. acids including glutamine and leucine and also
ent secreta fatty acids are known to either stimulate the B-cel-
participatgyi ment of GSIS are Is directly or potentiate the glucose stimulated in-
ling factors. In sulin secretion (GSIS) response®’. The early pre-
regulation of . . : .
absorptive phase of insulin release, seen within
few minutes after food ingestion, is due to the pa-
rasympathetic nerves supplying the islets®.

Unlike in most cell types where activation of an
retion will be reviewed energy consuming biological process (e.g., con-
FNsus picture with respect traction) lowers the ATP/ADP ratio, which in turn
ignaling of insulin secre- promotes cellular metabolism to produce ATP, in

B-cell metabolic activation is primarily driven by
substrate (fuel) availability®!°, rather than as a se-
condary effect to enhanced insulin release!!. Glu-
cose metabolism in B-cell is linked to the produc-
tion of ATP and a rise in the cytoplasmic ATP/ADP

Pancreatic B-cell, Insulin secretion, Type 2 diabetes ratio that is needed for K* ,;p channel inhibition and

mellitus. depolarization of the plasma membrane. The im-

of the body tissues to 1nsulin. It results from
ibiaty and epigenetic changes in
nvironmental factors such as
uced physical activity'=. The

Corresponding Author: Jun Liang, MD, Ph.D; e-mail: mwlj521@163.com 2215




C.-y. Zou, Y. Gong, J. Liang

portance of K*,;» channel closure for opening up
the voltage dependent L-type calcium channels in
the plasma membrane with the resultant Ca*
flux, as one of the primary events for insulin granu-
le exocytosis, is well established*!>!3 (Figure 1).
Glucose metabolism driven K*,rp channel inhibi-
tion has also been implicated in the regulation of -
cell mass'*!5. The ability of the (3-cell to respond to
the alterations in the blood glucose levels in the
(patho)physiological range (3 to 16 mM) is accom-
plished because of the affinities of two key regula-
tory proteins for glucose. These are Glut-1 and
Glut-2 glucose transporters that have high Km
(~17 mM), in human and in rodent -cells, respec-
tively, which rapidly equilibrate external and inter-
nal glucose and glucokinase (hexokinase 1V), the
rate limiting enzyme that catalyzes the first step of
glycolysis, which has a Km of ~8 mM for gluco-
e's. The Glut-1/2-Glucokinase tandem ensures a
steady increase in glycolysis and ATP production
in the B-cell with increasing blood glucose levels
and, thus, the glucose concentration dependent in-
sulin secretion response'’. GSIS in f3-cells is achie-
ved by a tight link between glycolysis and mlto—
chondrial metabolism for the quantitative dir
of glucose carbons into mitochondria, du
very low expression of lactate dehydrogenas
The exocytotic process in the p-cell is orch
ted by several components, in particular Ca*
and exocytotic effector proteins 10gagmd

large dense-core vesicles
ne. Besides, synaptic -like

small molecules li

neurons-H*;
el stlmuli influen-

us picture with respect to the
basis of insulin secretion promoted
ino acids and fatty acids.

hasic modes of insulin secretion

A@Rep rise in glucose concentration induces the
release of insulin in a biphasic pattern, both in vi-
tro and in vivo*?*, consisting of a rapid 3-10 min

2216

peak initially, followed by a slowly developing se-
cond phase. The first phase secretion is reduced i in
predlabetes whereas 1t is almost completely

vivo under physiological conditio
se concentration does not rise,n a
ner. However, this feature
in understanding the bio

betes condition. The
exocytosis of a s
nules already

-releasable pool, are
rane in close association with
ntribute to the rapid first pha-

ranules from the storage pool,
contribute to the second sustai-

cular basis of how granules pools are
phasic secretion is currently being
worked out. Recent studies showed that in human
islets, nascent insulin granules contribute to first
phase and the mature granules to the second phase
insulin secretion?. Different pools of insulin gra-
nules that are functionally distinct have been de-
scribed in (-cells. Regions of (3-cells with preas-
sembled soluble NSF-attachment protein receptor
(SNARE) proteins showed fast exocytosis in re-
sponse to rise in Ca**, but in regions without
preassembled SNARES, the exocytosis is slower?..
Whether these granule pools related to biphasic
secretion is uncertain. Recently, the model of pha-
sic secretion with respect to granule pools has
been questioned?. The current model proposes
that first phase insulin secretion results from a rea-
dily-releasable pool composed of granules docked
to the plasma membrane, whereas the second pha-
se results from a reserve pool of granules located
farther away that are recruited upon stimulation,
docked, and followed by fusion with the plasma
membrane. In a new currently accepted model, in-
sulin granules are recruited upon (-cell stimula-
tion and immediately fused to the plasma mem-
brane, in both the phases. This model promotes
the idea that the second phase secretion actually
consists of iteration of the first phase.
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Figure 1. Fuel metabolism and produciig i ing factors in the p-Cell. Glucose, fatty acids and glutamine are
metabolized through the Krebs cycle oy ceride/ fatty acid (TG/FA) cycle in the -cell. Glutamine is con-
verted by glutaminase in cytosol tg ich i d by glutamate dehydrogenase (GDH) in the mitochondria to

ion of a-ketoglutarate in Krebs cycle leads to production of
DH functions as anaplerosis as it provides substrate for Krebs

y ¥ le are oxidized by electron transport chain (ETC) to generate ATP
es (ROS). ROS can directly stimulate insulin exocytosis. ATP exits mitochondria
riggers Ca’* influx and insulin granule exocytosis. ATP is also used by adenylate

produce o-ketoglutarate that e
GTP, which inhibits GDH. Ge
cycle. Reducing equivalent

arboxylase inside mitochondria. Pyruvate participates in pyruvate cycles exchanging substra-
alate, with Krebs cycle. Transport of these metabolites from mitochondria to the cytoplam (ca-

which is formed from acetyl-CoA, as part of pyruvate/citrate cycle, inhibits fatty acid oxidation and positi-
influences TG/FA cycle by diverting fatty acyl-CoA into TG/FA cycle, with participating enzymes distributed in endopla-
tnic reticulum (ER), mitochondria, cytosol and plasma membrane. TG/FA cycle produces several lipid signaling molecules in-
ing monoacylglycerol (MAG), which stimulate insulin secretion. MAG activates Munc13-1, an exocytosis facilitating pro-
AG can also be produced by the hydrolysis of diacylglycerol (DAG), produced at plasma membrane from phosphoino-
sitideW(PIP2) during the activation of Gqg-coupled receptors like GPR40, the fatty acid receptor. Nutrient metabolism in 3-cell
generates metabolic coupling factors (MCF) that positively influence insulin granule exocytosis at different steps.
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Metabolic coupling factors
Insulin secretion is a multi-component process
and different steps involved are influenced by meta-
bolites produced during glucose, amino acid and li-
pid metabolism. It has recently been suggested that
the metabolic signals can be ‘early or late effec-
tors’, on the basis of whether the corresponding af-
fected step is an early event or late step in the pro-
cess of insulin exocytosis*’. A metabolic coupling
factor (MCF) can be a signal that contributes to the
regulation of nutrient-stimulated insulin secretion
process, either by modulating the nutrient metaboli-
sm (early regulators) or by directly influencing the
component(s) of exocytotic machinery (late regula-
tors). Table I gives examples of various MCF and
their proposed targets and roles in insulin secretion.
Considering the importance of insulin secretion, {3-
cell harbors metabolic pathways that generate these
multiple MCFs to ensure proper insulin secretion.
As mentioned above, the relatively low affini-
ties of Glutl and 2 and glucokinase for glucose
control the flux of glucose metabolism in the (-
cell, which in turn dictates the rate and magnitude
of insulin secretion in response to blood glucose
level. Glucose metabolism produces ATP, yaii
closes the K, channel with the resultant @
flux that promotes insulin granule exocytosis

Signals from anaplerosis and cataplerosis
Anaplerosis is the process that contributes to
the replenishment of Krebs cycle intermedig

metabolic pathways that lead to
different MCF (e.g., malon

chondrial matrix to
ters located on t

ism via pyruvate carboxylase
y expressed in (-cells?®%, is
s. Many studies have shown
o the rates of decarboxylation
pyruvate®, the rate of pyruvate
arboxylation correlates well with the glucose
prdence of GSIS*'32 Studies using PC
ibitol" phenylacetic acid®>, RNAi knockdown
and overproduction of PC in INS-1 cells and
islets clearly demonstrated the significance of PC
in GSIS¥3. Besides formation of oxaloacetate
by PC, the oxidative deamination of glutamate to
a-ketoglutarate by mitochondrial glutamate
dehydrogenase (GDH) is also a significant con-
tributor to anaplerosis by amino acids as discus-
sed below?¢. Mitochondrial GDH is important for

Mode and site of action

PKC, Munc13-1
Lipogenic enzymes
GDH

GDH, GTP-SCS

CPT-1, FAS

SUR1

Muncl13-1
Glutaredoxin, Kv
ROS Exocytosis proteins

IP3 receptor, L-type Ca** channel.
a-KG dehydrogenase, HIF1a-hydroxylase

Negative regulation of GSIS

Ca* signaling

Ca*, channels, exocytosis proteins
Pyruvate cycling

Channels, exocytosis

TG/FA cycling

Anaplerosis

Anaplerosis, Ca** signaling
Ca*influx, exocytosis

Exocytosis

Fatty acyl group partitioning

Ca* signaling

Vesicle fusion, Exocytosis
Exocytosis redox control, Ca**
Exocytosis complex redox control
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amino acid (glutamine plus leucine) induced in-
sulin secretion and gain of function mutation of
GDH is associated with a hyperinsulinemic hy-
poglycemic syndrome?”.

Pyruvate cycles and cytosolic NADPH
There are four pyruvate cycling processes, viz.,
pyruvate/citrate, pyruvate/malate, pyruvate/isocita-
te and pyruvate/phosphoenol-pyruvate cycles,
which are critical for anaplerosis/cataplerosis-deri-
ved signaling and MCF production®*-*¥4° and for
producing NADPH in the cytosol using mitochon-
drial NADH. Inasmuch as PC converts approxi-
mately 50% of the pyruvate to OAA in p-cell mi-
tochondria*' and citrate levels both in cytosol and
mitochondria are elevated in proportion to glucose
concentration, and because pharmacological inter-
vening at different steps of the pyruvate/citrate cy-
cle causes reduced GSIS in B-cells, it has been
suggested earlier that pyruvate/citrate cycling is
quantitatively important in the production of MCF
and in GSIS**32 This cycle may also be linked
to metabolic oscillations and, thus, contribute to
the pulsatile insulin release from B-cells that paral-
lels oscillations in [Ca?"],, ATP, NAD(P)H agghci-

isocitrate to a-ketoglutarate and NAD
NADPH. The precise role of this cycle in GS
uncertain as cICDH RNAi-kngg

were shown to both decrease v
crease GSISY. It has been
of cytosolic malic enzymg
pyruvate/malate cycl

pyruvate” cycle’! i
cytoplasm and

suggesting pyruvate cycling
e the major source of cytosolic

and by mitochondrial NADP-dependent
isocitrate dehydrogenase. NNT mutant mice show
glucose intolerance and reduced insulinemia du-

ring a glucose tolerance test’’, suggesting a role
for NNT and NADPH in GSIS. NNT-generated
NADPH can be used by mitochondrial NADP-de-
pendent isocitrate dehydrogenase, whick

al, 2005) and RNA:I sf
generating malic

ormed by ATP-citrate lyase (ACL)
arboxylated by acetyl-CoA carboxylase (ACC)
CoA, which has signaling role in the

transferase-1 (CPT-1). Inhibition of CPT-1 diverts
fatty acids from f-oxidation to lipid synthesis, and
some of these lipids play important role in the am-
plification of GSIS!. Build up of fatty acyl-CoA
due to CPT-1 inhibition, can lead to the activation
of protein kinase-C enzymes® and K*,p channel®
and also stimulate GSIS®. The view that malonyl-
CoA/CPT-1 interaction is needed for optimal GSIS
was supported by the studies showing impaired
GSIS in INS cells overexpressing a mutant CPT-1
that is insensitive to malonyl-CoA%. However, ove-
rexpression of cytosol-directed malonyl-CoA de-
carboxylase appears to lower GSIS only in the pre-
sence of fatty acids®*%. Fatty acids also directly
bind to cell surface GPCRs, GPR40 and GPR120
and stimulate GSIS®.

Glutamate, GDH and GTP

Inasmuch as glucose stimulation of islets is ac-
companied by augmented glutamate levels sup-
ports the view that glutamate is an MCF®"8, In ad-
dition, reduction of B-cell glutamate levels by glu-
tamate decarboxylase overexpression reduces in-
sulin secretion. Islets from -cell-specific GDH
KO mice display reduced GSIS, indicating gluta-
mate metabolism via GDH reaction is necessary
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for the stimulation of GSIS®. In mitochondria, al-
losteric inhibition of glutamate dehydrogenase by
GTP inhibits oxidative deamination of glutamate,
thereby negatively affecting insulin secretion (Fi-
gure 1; Table I). Gain of function mutations of
GDH, which render GDH to be less susceptible to
GTP inhibition are associated with hyperinsuline-
mia**®°. Both cytosolic and mitochondrial GTP
has an effect on insulin secretion. Mitochondrial
GTP is predominantly produced by the GTP-spe-
cific succinyl-CoA synthase (GTP-SCS), whereas
in cytosol nucleoside diphosphate kinase is re-
sponsible for GTP formation. On the other hand,
mitochondrial GTP has also been shown to modu-
late mitochondrial metabolism and Ca*" and to po-
sitively influence GSIS in f-cells™. Thus, RNAi-
knockdown of GTP-SCS lowers -cell ATP levels
and reduces GSIS™. GTPase enzymes associated
with insulin exocytosis utilize cytosolic GTP to
promote secretion and it has been shown that GTP
levels in cytosol rise at high glucose concentra-
tion. Besides, recent evidence strongly implicated
a role for cGMP in stimulating insulin secretion.
Thus, activation of AMPA receptors by glutamate
can lead to elevated cGMP, which inhibits
channel and stimulate secretion’' and the p
of guanylate cyclases, which produce cGM
GTP in B-cells has been confirmed™.

ATP, ADP, AMP and AMPK

tions in ATP/ADP ratio §
channel are relevant a
late kinase-1, whic
subunit of K*,p
whose cellular

S w1th K1r6 2
qucleotides,

e net inhibitory
the net activating effect of
1 compgment of the channel™.

ein kinase (AMPK), which is a
er of cellular energy metabolism™.

c veen several excellent reviews on
PK and we focus here exclusively on the re-
developments. Cellular AMP levels are regu-
Wia its utilization by adenylate kinase and th-
rough its formation during fatty acid and amino
acid activation. Activation of AMPK triggers
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enhanced FFA f-oxidation and reduces lipolysis,
thereby reducing the production of lipid signals
for the amplification of GSIS”’. Recent work indi-
cated that AMPK activation causes me

glucose concentratlons < 10 m
gher glucose levels above 16

AMPK activation offers
the toxicity of fuel su
mulation’®. Recent s
also likely contrg

also is known
cells’®78, L

-cells, it has been proposed
CF for promoting GSIS”%.

mental for -cell function. Mito-
ndrial electron transport chain components
and Complex-III are the major site for
ation®*3!. Besides mitochondria, ROS
can also be produced by plasma membrane elec-
tron transporting NADPH oxidase complex” and
in peroxisomes. It has been suggested that in 3-
cells peroxisomal fatty acid oxidation is the major
source for H,0O,, which leads to B-cell dysfunc-
tion and death whereas mitochondrial (3-oxidation
does not contribute significantly to ROS®2. In mi-
tochondria, nicotinamide nucleotide transhydro-
genase, which produces NADPH, contributes to
free radical detoxification® and altered activity of
this enzyme is associated with proportional chan-
ges in insulin secretion®”#3.

The rise in influx of Ca?*, while necessary for
insulin granule exocytosis, can also cause
NADPH oxidase activation resulting in increased
production of H,0,”. Attenuation of ROS signal
is mainly accomplished by superoxide dismutase,
glutathione peroxidase, thioredoxin and peroxire-
doxins in human p-cell whereas these enzymes
are expressed at low levels in rodent islets”. The
positive effects of ROS, in particular H,O, and
0,”~ on GSIS include enhancement of Ca* in-
flux® and activation of volume regulated anion
channels® even though the precise targets are not
identified. The detrimental effects of ROS are ac-
tivation of mitochondrial UCP2, oxidative modi-
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fication and inhibition of aconitase, adenine nu-
cleotide translocase and glyceraldehyde-3-
phosphate dehydrogenase, and oxidation of mito-
chondrial cardiolipin resulting in reduced ATP le-
vels, decreased insulin secretion and apoptosis *
.81 Production of ROS is likely to be elevated in
the pancreatic islets from T2D patients than from
nondiabetic subjects®. Thus, ROS can have dual
function in the regulation of GSIS (Figure 1) —
both in stimulating secretion as well as in cau-
sing B-cell dysfunction, when chronically produ-
ced in high amounts.

Glucose stimulation of -cell has been shown
to cause a rapid turnover of inositol containing li-
pids, particularly the plasma membrane associa-
ted phosphatidylinositol-4,5-bisphosphate (PIP2)
and -3.4,5-trisphosphate (PIP3) and it has been
suggested that these polyphosphoinositides likely
play a facilitating role in GSIS, probably by con-
trolling intracellular Ca?* levels and also DAG le-
vels®®. Recent studies implicated inositol-tripho-
sphate and other inositol polyphosphates in the
regulation of GSIS¥’, probably by their direct ac-
tion on L-type Ca?* channels.

Triglyceride/fatty acid cycling
and lipid MCF signals
The triglyceride/ fatty a01d (TG/FA) cycle

initiated by the fatty acid ¢4
rol- 3 phosphate arising 3

acetone pho-
ep of esteri-

glycolytlc interme

asitive lipase) and finally glycerol
® recently discovered o/p-hydrolase
ontaining-6 (Figure 2)%. TG in B-cells is stored
picro lipid droplets, distributed beneath the
*mbrane (Pinnick et al, 2010). Many of the
intermediates of TG/FA cycle show signaling
functions and some are known to participate in

insulin secretion in B-cells’”’. Thus, agents that
block TG/FA cycle at different steps are known
to reduce GSIS™#1. 1t is important to note that
lipid intermediates of lipogenic arm ha

GSIS (Figure 2). Lysophosphatid
to affect Ca** influx while p
thought to directly influen

Recent studies de
ces 1,3- and 2,3

as th1s lipid can activate Certain protein kinase-
so activate the exocytotic pro-
e P-cells. However, conside-
that lead to accumulation of
se a decrease in GSIS rather
gests that MAG is the likely lipid
al denved from hpolys1s Recent studies con-
as suppression of the MAG hydrolase
n B-cells led to enhanced GSIS, both in
vitro and in vivo and also added MAG stimulated
GSIS in islets by activating Munc13-1%.

Glucose stimulation of B-cells increases li-
polysis® and the release of FFA, which can acti-
vate GPR40, the Gqg-coupled FFA receptor lea-
ding to sn1,2-DAG production and subsequent
activation of protein kinase C enzymes or protein
kinase D%, that have been implicated in GSIS
(Figure 2)**. The role of released FFA acting as
autocrine /paracrine signals in GSIS is yet to be
established.

Cyclic AMP and hormonal modulators: Seve-
ral hormonal and neurotransmitter stimuli to -
cells lead to elevated cyclic AMP levels via G-
coupled GPCR activation, without influencing
intracellular Ca**. Incretins like glucagon-like
peptide-1 (GLP-1), which are released from inte-
stinal L-cells in response to high blood glucose
potentiate insulin secretion by f-cell by stimula-
ting production of cAMP, which activates protein
kinase A (PKA)-dependent and -independent me-
chanisms of exocytosis, and K,rp-channel
closure”®. cAMP also acts via PKA-independent
mechanism mediated by the cAMP-sensing pro-
tein Epac2 (Figure 1), which has been shown to
be a target of sulphonylureas®.
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termed as triglyceride/fatty acid (TG
rol-3-phosphate with fatty acyl-CoA

excess fuel supply and insulin resi-
nce due to obesity, pancreatic 3-cell from nor-
on-diabetic individuals responds by com-
ry hypersecretion of insulin in order to
maintain normoglycemia. Loss of this ability of
B-cells for compensatory elevated insulin secre-
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hich activates Munc13-1 and (6),

esis and breakdown of triglycerides and other glycerolipids is
pathway starts with the condensation of glucose derived glyce-
fatty acid by acyl-CoA synthase, long chain (ACSL). This first
ansferase isoenzymes located on mitochondria and endopla-
ic acid is further acylated to phosphatidic acid on ER by ly-

ormation of 1,2-diacylglycerol (1,2-DAG) from phosphandlc ac1d

tabolized in the p-cells, due to the lack of glycerol kinase, and leaves the cell via aquaglyceroporins.
ipid signals that promote insulin secretion. These include (1), fatty acyl-CoA, which targets

FA, which activates GPR40.

tion ultimately culminates in T2D. Thus, it has
been shown that in subjects who potentially deve-
lop T2D, there is an increase in blood insulin le-
vels during the prediabetic stage, where normo-
glycemia is maintained and this is followed with
time by a steady decline in circulating insulin le-
vels due to B-cell failure, associated with elevated
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fasting glycemia above 5.5 mM. The mechanisms
involved in B-cell compensation are not clear but
animal studies implicated both (3-cell mass expan-
sion as well as enhanced p-cell function'’. The
elevated compensatory insulin secretion by pan-
creatic islets can be due to increased fuel (glucose
and fatty acids) supply, increased growth factor
and incretin signaling. Several monogenic forms
of obesity and diabetes, including maturity-onset
diabetes of the young (MODY) have been descri-
bed””. However, T2D is a polygenic disease and
shows more complex genetics, in which varia-
tions within multiple genes, each independently
contributing some risk for disease development®.
The insulin secretory defect in T2D is multifacto-
rial and likely involves reduced (-cell mass, im-
paired [3-cell glucose sensing, and defective (3-cell
secretory machinery and MCF production. These
defects are not readily recognized in in vivo stu-
dies, making it difficult to understand the specific
disease mechanisms coupled to T2D risk loci. A
recent study in T2D patients revealed that such
T2D risk imposing genetic variants can affect
either glucose sensing, exocytosis or structural
elements of secretory machinery®.

Conclusions

standing stems from the
racy of multiple met s, e
i i ontrol GSIS.
sisting of
getaboli-

insulin into circu-
an be detrimen-

are altered in T2D and to prevent
reverse such pathological alterations in meta-
. Identification of these pathways will help
berstanding the molecular basis of (-cell
failure in diabetes and to discover new targets to
develop antidiabetic drugs.
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