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Abstract. – Event-related potentials (ERPs)
are very small voltages recorded from the scalp
which originate in the brain structures in re-
sponse to specific events or stimuli. They appear
as a series of peaks and troughs interspersed in
the Electroencephalogram (EEG) waves. The ex-
act neural origins and neuropsychological mean-
ing of the P300 are imprecisely known, even
though appreciable progress has been made in
the last 25 years. In this review, we will focus on
the possible neural generators of this potential.
Given the attention and memory operations as-
sociated with P300 generation, the first human
studies on the neural origins of this ERP focused
on the hippocampal formation using depth elec-
trodes implanted to assess sources of epileptic
foci in patients. Other lesion studies have found
that the integrity of the temporal-parietal lobe
junction is involved with either generation or
transmission processes subsequent to hip-
pocampal activity and contributes to ERP mea-
sures. These findings imply that hippocampal ab-
sence does not eliminate the P300, but that the
temporal-parietal junction does affect its produc-
tion. As mentioned till now, the neuroelectric
events that underlie P300 generation stem from
the interaction between frontal lobe and hip-
pocampal/temporal-parietal function. ERP and
fMRI studies using oddball tasks have obtained
patterns consistent with this frontal-to-
temporal and parietal lobe activation pattern.
Further support comes from magnetic reso-
nance imaging (MRI) of gray matter volumes
that suggest individual variation in P3a ampli-
tude from distracter stimuli is correlated with
frontal lobe area size, whereas P3b amplitude
from target stimuli is correlated with parietal
area size. Given distinct neuropsychological
correlates for P3a and P3b, different neuro-
transmitters may be engaged for each con-
stituent subcomponent under specific stimu-
lus/task processing requirements. Available da-
ta suggest that dopaminergic/frontal processes
for P3a and locus-coeruleus-norepinephrine/
parietal activity for P3b are reasonable to pro-
pose. This dual-transmitter P300 hypothesis is
speculative but appears to account for a variety
of findings and provides a useful framework for
evaluating drug effects.
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Introduction

Event-related potentials (ERPs) are very small
voltages recorded from the scalp which originate
in the brain structures in response to specific
events or stimuli1. They appear as a series of peaks
and troughs interspersed in the Electroencephalo-
gram (EEG) waves. These originate in response to
occurrence of a discrete event, which could be (1)
presentation of a stimulus or (2) psychological re-
action to a stimulus. These electroencephalograph-
ic (EEG) fluctuations are, thus, electric potentials
time locked to sensory, motor or cognitive events.
Recording these voltage fluctuations provides a
safe and noninvasive approach to study psy-
chophysiological correlates of mental processes.
In terms of electromagnetic origin they are
thought to reflect the summed activity of postsy-
naptic potentials produced when a large number of
similarly oriented cortical pyramidal neurons (in
the order of thousands or millions) fire in syn-
chrony while processing information2. The ERPs
have been classified in several different ways. The
most common way of classification divides EPR
waves into 2 categories: the early waves, or com-
ponents peaking roughly within the first 100 mil-
liseconds after stimulus, which are termed “senso-
ry” or “exogenous” as they depend largely on the
physical parameters of the stimulus. In contrast,
ERPs generated in later parts of the recording (be-
yond 100 ms) reflects the cognitive evaluation of
the stimulus and are termed ‘cognitive’ or ‘en-
dogenous’ ERPs as they examine sensory infor-
mation processing by the brain. The waveforms,
thus, originating have been described and named
according to latency and amplitude.
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The P300, first described by Sutton et al3, is
perhaps the most extensively studied ERP com-
ponent in investigations of cognitive functions.
Sutton et al3 described this waveform as “the ma-
jor waveform alteration in the amplitude of the
positive-going component which reaches peak
amplitude at about 300 ms”. Subsequently in
next few years the essential characteristics of the
P 300 were described. Sutton et al4 showed that
the P 300 wave could be elicited by the omission
of a stimulus if this omission was informative.
The designatory name of P 300 is determined by
the fact that its peak latency is about 300 ms
when a young adult subject makes a sensory dis-
crimination. Its other designation of P 3 wave
comes from the fact that it is the third major pos-
itive peak in the later part of any evoked
potential5. Ritter and Vaughan6 used the “odd-
ball” paradigm for the first time, wherein a sub-
ject detects occasional target signals randomly
interspersed among more frequent standard stim-
uli. Subsequently Vaughan and Ritter7 focussed
on the distribution of this wave and observed that
it was predominantly distributed over the parieto-
central area of scalp. The details of this wave-
form along with its neurophysiological and neu-
ropsychological correlates will be described in
next sections. Concisely, P 300 wave is a parieto-
central positivity that occurs when a subject con-
sciously detects an informative task-relevant
stimulus. The P300 has provided much funda-
mental information on the neural underpinnings
of cognition3,8. Despite hundred of studies con-
ducted since its discovery, the usefulness of P300
as a practical assessment tool remains limited be-
cause its neural generators are still unclear.

The Neural Generators of P 300
The neural generators of P300 remain impre-

cisely delineated, although appreciable progress
has been made in the last 25 years9-11. Electro-
physiologically, they are thought to reflect the
summed activity of postsynaptic potentials pro-
duced when a large number of similarly oriented
cortical pyramidal neurons (in the order of thou-
sands or millions) fire in synchrony while pro-
cessing information2. It is believed that multiple
generators contribute to recording components
N2 and P3 belonging to the P-300 Long Latency
Auditory Evoked Potential, such as the supratem-
poral cortex, in the case of component N2, and
the reticular formation, lemniscus, inferior col-
liculus, thalamus, primary cortex, frontal cortex,
centro-parietal cortex and hippocampus12,13, and

that it is associated to information processing and
not to the activity of the individual’s memory14.
This potential can be altered when there are
deficits in the selective attention and alert mecha-
nisms, state of conscience, and psychological
conditions that impair attention12,13.
The exact neural origins and neuropsycholog-

ical meaning of the P300 are imprecisely
known11. Given the attention and memory opera-
tions associated with P300 generation, the first
human studies on the neural origins of this ERP
focused on the hippocampal formation using
depth electrodes implanted to assess sources of
epileptic foci in patients. These recordings sug-
gested that at least some portion of the P300
(P3b) is generated in the hippocampal areas of
the medial temporal lobe15,16. However, subse-
quent investigations using scalp recordings on
individuals after temporal lobectomy17,18, experi-
mental excisions in monkeys19, and patients with
severe medial temporal lobe damage20,21 found
that the hippocampal formation does not con-
tribute directly to P300 generation22. Indeed, as-
sessment of patients with bilateral hippocampal
lesions demonstrated no statistically reliable
P300 amplitude or latency differences relative to
a matched control group23. Discrimination be-
tween target and standard stimuli in an oddball
paradigm is hypothesized to initiate frontal lobe
activity that is sensitive to the attentional de-
mands induced by task performance24-26. fMRI
and ERP findings have demonstrated frontal
lobe activity for the detection of rare or physi-
cally alerting stimuli27,28. P3a may be generated
when such stimuli are processed if sufficient at-
tentional focus is engaged. Patients with frontal
lobe lesions demonstrated diminution of P3a
amplitude, whereas the same patients demon-
strated a parietal maximum for the P3b. Frontal
lobe integrity is, therefore, necessary for P3a
generation29,30. Discrimination between target
and standard stimuli in an oddball paradigm is
hypothesized to initiate frontal lobe activity that
engages the attention focus demanded by task
performance24-26. Moreover, patients with focal
hippocampal lesions evinced reducedP3a ampli-
tude from novel distracters but normal P3b com-
ponents from targets31.
P300 amplitude is affected by temporal-pari-

etal junction integrity as its absence greatly re-
duces component size over the parietal area32-34.
This connection implies that the P3a and P3b in-
dicate a circuit pathway between frontal and tem-
poral/parietal brain areas11,35,36.
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P3b appears to occur when subsequent atten-
tional resource activations promote memory op-
erations in temporal-parietal areas31,37,38,39. In-
deed, elegant cellular recording studies in pri-
mates indicate that information induced by
changes in frontal activation during a matching-
to-sample task is shunted to infero-temporal
structures that index task context updating for
future stimulus presentations40. Thus, it is rea-
sonable to suppose that P3a and P3b generation
stems from frontal and temporal/parietal activa-
tions41,42. This view is congenial with the neu-
rocognitive assumptions that incoming stimuli
invoke top-down attentions witching, and that
bottom-up memory-driven operationsguide re-
sponse organization and production43-45. ERP
and fMRI studies suggest that a frontal attention
mechanism governs neural responsivity to nov-
elty46-49, thereby, implying top-down control50-53.
Attentional resources used to maintain memory
items in parietal regions may result from re-
sponse organization produced by bottom-up
processing54-56. In sum, stimulus characteristics
and task demands are determinants of distracter
evaluation and contribute to the different topo-
graphic and timing outcomes observed at the
scalp57-60.
Other lesion studies have found that the in-

tegrity of the temporal-parietal lobe junction is
involved with either generation or transmission
processes subsequent to hippocampal activity
and contributes to ERP measures32-34,61. These
findings imply that hippocampal absence does
not eliminate the P300, but that the temporal-
parietal junction does affect its production. As
outlined above, the P3a is produced when the at-
tention focus required for the primary discrimi-
nation task is interrupted by an infrequent non
target stimulus event, which does not have to be
perceptually novel. ERP studies on humans with
frontal lobe lesions have found that patients pro-
duced a clear diminution of the P3a from the dis-
tracter stimulus, with a parietal maximum for the
P3b from the target stimulus29. Frontal lobe en-
gagement is, therefore, necessary for P3a genera-
tion and mechanisms of attention control30,35,62. In
addition, the hippocampal formation is also in-
volved in “novelty” information processing, as
patients with focal hippocampal lesions demon-
strate reduced P3a amplitude from distracters but
normal P3b components from targets relative to
controls31. P3a amplitude from novel auditory
distracter stimuli was virtually eliminated over
frontal electrode sites for lesion patients com-

pared to controls, whereas P3b amplitude from
the target stimulus was generally similar between
the groups at the parietal site.
ERP and fMRI findings have demonstrated

frontal lobe activity for the detection of rare or
alerting stimuli27,28,63. P3a appears related to the
neural changes in the anterior cingulate when in-
coming stimuli replace the contents of working
memory, and communication of this representa-
tional change is transmitted to infero-temporal
lobe representation maintenance mechanisms40.
P3b results from memory storage operations that
are initiated in the hippocampal formation with
the updated output transmitted to parietal cor-
tex31,39. Thus, P3a is produced when a demanding
stimulus commands frontal lobe attention; P3b is
produced when attention resources are allocated
for memory updating in association cortex.
As mentioned till now, the neuroelectric events

that underlie P300 generation stem from the inter-
action between frontal lobe and hippocampal/tem-
poral-parietal function31,42. ERP and fMRI studies
using oddball tasks have obtained patterns consis-
tent with this frontal-to-temporal and parietal lobe
activation pattern63-67. Further support comes from
magnetic resonance imaging (MRI) of gray matter
volumes that suggest individual variation in P3a
amplitude from distracter stimuli is correlated
with frontal lobe area size, whereas P3b amplitude
from target stimuli is correlated with parietal area
size68. Such results may underlie individual P3a
and P3b variability50,69-71. Initial neural activation
during auditory oddball discrimination may origi-
nate from right frontal cortex72, as P300 amplitude
is larger over the right compared to left
frontal/central areas73-75. After frontal processing
of the incoming stimulus, activity appears to prop-
agate between the cerebral hemispheres across the
corpus callosum76,77. This hypothesis is supported
by evidence that larger callosal fiber tracts are as-
sociated with larger P300 amplitudes and shorter
latencies for left- compared to right-handed indi-
viduals73,77,78, since these groups differ in their cor-
pus callosum size79,80.
Principal component analysis has been used

for analysis of P 300. PCA has isolated the Sup-
plementary Motor Cortex (SMC) or cingulate
gyrus as the possible generators for the Novelty
P381. Another method of analysis, the Quadruple-
dipole modelling of somatosensory-evoked P3b
has localized its origin specifically to the hip-
pocampal and parietal cortical regions82. The role
of temporal-parietal junction has also been impli-
cated by physical lesion studies which show that
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with damage to tissue in this region, a loss of the
P3b waveform is observed35,83. Invasive cerebral
electrode recordings have also localized the tem-
poral-parietal junction as the generator for the
classical P30084. The analysis of auditory-evoked
potentials by brain electric source analysis and
multiple-dipole modelling indicates more specif-
ic regions of the hippocampus and temporal lobe
as the putative generators of P 30085.

P 300 in Neurological Conditions
Although P300 has been traditionally viewed

as originating from superficial cortical structures,
but it has also has shed light upon diseases linked
etiologically to deep brain structures, including
the basal ganglia. Especially efforts have been
laid in evaluating its role in Parkinson’s disease.
For instance, it has been found that anterior P3a
is attenuated in amplitude in patients with
Parkinson’s disease86, with concomitant P300b
anomalies87. Furthermore, differences in NOGO-
P3 (and NOGO-N2) waveforms indicate dys-
functional frontal-lobar inhibitory processing88,
and may be useful as objective measures of
Parkinsonian progression or functional limita-
tion. Marked reduction or even absence of P3
distributions in visual search tasks has been ob-
served in patients with the neurodegenerative dis-
orders involving basal ganglia. These include
choreiform movement disorder Huntingtons Dis-
ease, which classically demonstrates caudate nu-
clear atrophy, but also may manifest cortical
symptoms (89). In addition to deeper structures,
other neurological conditions involving cortex al-
so show impairments in P 300. Alzheimer’s dis-
ease, which typically affects the temporal and as-
sociative cortex regions, shows prolonged P300
latency and attenuated amplitude90. Based on
these findings, it has been proposed that P300 ac-
tivity may serve as a useful marker of attention
and as a screen for combination-drug therapy in
investigations of anti-Alzheimer drugs91. Trau-
matic or other insult to the prefrontal cortex is re-
flected in diminished amplitude of the novelty P3
response to a novel stimulus29. This amplitude
change further correlates with reduced attentional
shift towards novel stimuli46.
P300 latency may also be applied clinically as

a diagnostic tool and a prognostic marker for re-
covery after cortical insult although a consensus
has not been reached in this context. A small
study of patients with ischemic stroke has shown
that changes in P300 latency correlated with sub-
clincal damage to the right parietal lobe. In an-

other study, magnitude of alteration in P300 in
the subacute phase of stroke correlated with
functional recovery after several months time92.
Theoretically, P300 is likely comprised at the
cellular level by a series of neuronal subnetworks
which develop at differing rates.

The Neurotransmitters Involved in P 300
The neurotransmitters systems underlying

P300 generation are as yet unclear, although vari-
ous mechanisms have been implicated93,94. Given
distinct neuropsychological correlates for P3a
and P3b, different neurotransmitters may be en-
gaged for each constituent subcomponent under
specific stimulus/task processing requirements.
Available data suggest that dopaminergic/frontal
processes for P3a and locus-coeruleus-
norepinephrine/parietal activity for P3b are rea-
sonable to propose. This dual-transmitter P300
hypothesis is speculative but appears to account
for a variety of findings and provides a useful
framework for evaluating drug effects. These
considerations and a strategy for evaluating acute
and chronic drug-use effects are reviewed next.
Several lines of evidence imply catecholaminer-
gic mediation for frontal P300 generation: (1)
Parkinson patients who have decreased levels of
dopamine demonstrate deficient P300 mea-
sures95,96. (2) The dopamine antagonist sulpiride
increases P300 in low-amplitude subjects and de-
creases it in high-amplitude subjects97. (3) Phar-
macological studies have found dopaminergic
mediation of P300 amplitude and latency98,99. (4)
Children at elevated risk for alcoholism evince
dopamine-related genetic differences associated
with P300 amplitude deficits100, which may be
related to dopamine level differences underlying
an “endophenotype of alcoholism”101. Although
systematic amplitude topography comparisons of
these effects have not been performed, the find-
ings taken together suggest a frontal/central fo-
cus for the contribution of P3a to overall P300. In
addition, a review of the wide-ranging P300 neu-
ropharmacology literature suggests that the lo-
cus-coeruleus-norepinephrine (LC-NE) system
underlies parietal P300 generation in a simple
target detection task55. Since the neuropharmaco-
logical evidence stems primarily from ERPs
elicited in rat, cat, and monkey populations, dif-
ferences in paradigm and task performance need
to be considered in evaluating these outcomes.
However, the suggestion that locus-coeruleus-
norepinephrine (LC-NE) contributes to P300
generation is consistent with attention resource
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allocation and arousal-related effects in hu-
mans102,103. The topographic LC-NE activation of
temporal-parietal areas also implies P3b contri-
bution to overall P300.
Given that P3a is related to focal attention

mechanisms mediated by dopaminergic activity
and that P3b requires temporal-parietal integrity
where dense NE inputs are found, a dual transmit-
ter hypothesis underlying P300 generation appears
plausible. One approach to these issues in humans
is to assay ERP effects before and after acute drug
intake and compare individuals who have been se-
lected based on their chronic drug-use frequency. If
P3a and P3b topographic distributions vary as a
function of acute and/or chronic drug use, develop-
ment of a metric for assessing individual reactions
to drug effects can be pursued. Baseline, placebo,
and drug challenge measures are obtained to com-
pare low-use and high-use subject groups. If ERPs
do not vary across experimental drug conditions
(left panel), it is reasonable to infer that the under-
lying neurotransmitter systems are similar between
the use groups. If ERP measures do vary across ex-
perimental drug conditions (right panel), it is rea-
sonable to infer that the underlying neurotransmit-
ter systems are different between the use groups.
This approach permits the evaluation of acute and
chronic drug use changes on the neurotransmitter
systems that contribute to individual differences in
ERP scalp recordings. Topographic changes in P3a
and P3b from different drugs can, then, be devel-
oped to characterize how the central nervous sys-
tem (CNS) is affected by short- and long-term
changes to neurotransmitter systems.

The Dual Transmitter Hypothesis
The neurotransmitter systems underlying P300

generation are yet unclear, with various mecha-
nisms implicated93,94. However, available data sug-
gest that P3a is related to frontal focal attention
and working memory mediated by dopaminergic
activity, and that P3b is related to temporal-pari-
etal activity where dense norepinephrine inputs
are found55,104- 107 The P3a and P3b amplitude data
were obtained using a three-stimulus paradigm to
compare unaffected controls, patients with restless
leg syndrome, and patients with Parkinson’s dis-
ease. Restless leg syndrome is thought to originate
from dopaminergic deficits, with greater such
deficits found for Parkinson’s disease patients108.
As indicated by the topographic mappings, P3a
amplitude from the distracter stimulus is robust for
the controls, decreased for the restless leg syn-
drome patients, and virtually eliminated for the

Parkinson’s patients. P3b from the target stimulus
for the controls and restless leg patients is compa-
rable, but greatly reduced for the Parkinson’s pa-
tients. These data suggest that at least the P3a and
some portion of the P3b are affected by dopamin-
ergic activity107.
Several lines of evidence imply catecholamin-

ergic mediation of frontal P300 (P3a) generation:
(1) Parkinson patients who have decreased levels
of dopamine demonstrate deficient P300 mea-
sures95,96. (2) The dopamine antagonist sulpiride
increases P300 in low-amplitude subjects and de-
creases it in high-amplitude subjects97. (3) Phar-
macological studies have found dopaminergic
mediation of P300 amplitude and latency98,99. (4)
Children at elevated risk for alcoholism demon-
strate dopamine-related genetic differences asso-
ciated with P300 amplitude deficits100, which may
be associated with an ‘‘endophenotype of alco-
holism’’ that likely originates from externalizing
disorders101,109. A comprehensive review of the
wide-ranging P300 neuropharmacology literature
suggests that the locus coeruleus- norepinephrine
(LC-NE) system underlies parietal P300 (P3b)
generation for a target detection task55. Since the
neuropharmacological evidence stems primarily
from ERPs elicited in rat, cat, and monkey popu-
lations, differences in paradigm and task perfor-
mance need to be considered in evaluating these
outcomes. However, the suggestion that LC-NE
contributes to P300 generation is consonant with
attention resource allocation and arousal-related
effects in humans110,103,111. The topographic LC-
NE activation of temporal-parietal areas also is in
agreement with overall P300 characteristics112.

The Genetic Underpinnings of P 300
The genetic underpinnings for P300 are conso-

nant with findings for ERPs and personality at-
tributes such as introversion/extraversion, sensa-
tion seeking, and impulsivity113,114. Although the
relationship among ERP measures and personali-
ty is murky, a correlation between individual dif-
ferences for personality-related arousal levels
and P300 is generally observed: low arousal indi-
viduals have smaller P300 amplitudes compared
to high-arousal individuals who have larger P300
components115,117. This relationship is modulated
by biological factors102, differences among para-
digms118, and psychopathology119-121. These ef-
fects could be related to individual differences
for attentional resource capabilities that may
stem from variability for neurotransmitter func-
tion100,107.
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