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Abstract. – Despite recent advances in the 
treatment of breast cancer (BC), it still remains 
as a prevalent and deadly cancer in the world. 
Given that BC is a heterogeneous disease, it 
is necessary to clarify molecular mechanisms 
in tumor cells to improve various therapy out-
comes and overcome therapy resistance. Au-
tophagy represents one of the most important 
intracellular degradation pathways involved in 
diverse biological processes and plays an im-
portant bi-directional role in tumor formation 
and progression. Among the several mecha-
nisms that affect autophagy, microRNAs (miR-
NAs) play a crucial role as gene regulators. Sev-
eral in vivo and in vitro studies have reported 
multiple miRNAs regulating autophagy in BC 
that affect tumor initiation, progression, and re-
sponse to various therapies. In the present re-
view, we highlighted the mechanisms through 
which miRNAs regulate autophagy in BC and 
their potential use as therapeutic targets.
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Introduction

Despite all the efforts that have been made in 
recent years for the prevention and treatment of 
BC, this disease is currently the most widespread 
cancer with the highest death rate in the world 
which indicates a need to explore the molecular 
details of tumor cells activities in more detail1. 

As a cell recycling mechanism, autophagy 
plays an important role in maintaining cells’ 
homeostasis and basic activities which have been 
attracted attention in recent years in cancer re-

search. Considering autophagy’s quality control 
and stress-management roles in cells, any dis-
order in this process can play a role in cancer 
initiation and progression. However, according 
to the results of various studies, an ambiguous 
relationship between autophagy and carcinogen-
esis has been observed, which has necessitated 
further research2. 

MiRNAs are among the factors that have been 
considered as a tool for detection, treatment, and 
monitoring cancer patients. These molecules, as 
regulators of gene expression, affect a wide range 
of cellular events and are among the vital factors 
in some events including cancer3. In recent years, 
studies have been shown the regulatory relation 
between miRNAs and the autophagy process4. 

Given that autophagy and miRNAs have both 
been linked to tumorigenesis and miRNAs have a 
regulatory effect on autophagy, it seems plausible 
to use autophagy-regulating miRNAs as diagnos-
tic and therapeutic targets. In this review, we will 
provide a comprehensive description of autopha-
gy, followed by a discussion on autophagy-regu-
lating miRNAs in BC, especially those involved 
in responding to different therapies in BC.

Breast Cancer
BC is the most prevalent and deadliest cancer 

globally  with more than 2 million new cases 
being diagnosed in 2019. According to statistics, 
eight out of one woman (13%) will get BC, and 
35 out of one woman (3%) will pass away due 
to the BC during her lifetime5. Age, gender, 
family history, gene mutations, radiation expo-
sure, periodontitis, medical intervention such as 
hormonal replacement therapy, and microbiota 
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are all risk factors for BC6. The presence or ab-
sence of molecular markers, as well as estrogen 
or progesterone receptors (hormone receptors) 
and human epidermal growth factor 2 (EGFR2 
or HER2), cause molecular subtypes inclusive 
of luminal subtypes A (HR+/HER2-), B (HR+/
HER2+), HER2-enriched (high expression level 
of EGFR2) and triple-negative tumors (TNBC) 
(HR- and HER2-)7. These subtypes cause high 
heterogeneity and make the necessity for various 
treatment options8. Although usage of various 
therapy options including surgical resection, ra-
diotherapy, chemotherapy, targeted therapy, im-
munotherapy, and systemic therapy have lowered 
the mortality rate, there are still many barriers 
to the treatment of patients with BC, which lim-
its the success of the therapy. 

MicroRNAs
MiRNAs as a type of small non-coding RNAs 

play pivotal roles in regulating gene expression 
in a target-specific manner based on the extent 
of complementarity with targeted mRNAs. Their 
regulatory effects are exerted by mRNA decay or 
translational repression. Considering their effect 
on the gene or protein expression, various cellu-
lar functions such as metabolism, proliferation, 
differentiation, apoptosis, survival, and stress 
responses in different cell types are affected 
by miRNAs9-11. There is a link between dys-
regulation in miRNAs expression patterns and 
many malignancies3,12. Depending on the mRNA 
they are targeted during carcinogenesis, they 
operate as an oncomiR or tumor suppressor13,14. 
All stages of tumorigenesis including initiation, 
progression, spreading, and even the response to 
therapies can be affected by changes in miRNA 
level15-17. 

The first relation between miRNAs and BC 
was shown in 200518 and since then many studies 
have been conducted and have shown that miR-
NAs have the potential to be used as diagnostic, 
prognostic, and therapeutic biomarkers in BC19. 

Autophagy 
The cornerstone of biological activities in cells 

is the maintenance of physiological homeostasis 
via biosynthesis and degradation. Autophagy is 
a conserved and regulated cellular mechanism 
that helps to degrade and recycle cytoplasmic 
components and organelles in organisms ranging 
from yeast to mammals2. For the first time, it 
was suggested by Christian de Duve in 1963 as 
the cellular process in which the bilateral mem-

brane vesicle called the autophagosome, engulfs 
intracellular contents and delivers them to the 
lysosome for digestion20. Due to this action, not 
only cellular substances and damaged organelles 
are removed, but also the materials needed by the 
cell are recycled and energy homeostasis is main-
tained. Autophagy is active in most cells at a low 
level regulating cell metabolism by eliminating 
damaged proteins and organelles, called basal 
autophagy2. Furthermore, stress conditions such 
as starvation, unfolded protein response, hypox-
ia, DNA damage, viral infection, growth factor 
depletion, etc. can initiate autophagy which is 
called induced autophagy to respond to the needs 
of the cell21. There are several biological func-
tions for which autophagy is critical ranging from 
embryonic development to cell death in a way it 
is suggested as programmed cell death type II or 
autophagic cell death (ACD)22. There is a strong 
association between autophagy and numerous 
cellular signaling pathways. In response to stim-
ulant or stressful conditions autophagy-related 
genes (ATGs) are activated and contribute to the 
formation of autophagosome and fusion with the 
lysosome2. Recent studies have shown what was 
thought to be a non-selective process of autopha-
gy can be a selective one under nutrient-rich con-
ditions (macroautophagy), and there are different 
forms of selective autophagy, according to the 
targets, which are: nucleophagy, ER-phagy, mi-
tophagy, ribophagy, lipophagy, glycophagy, etc. 
selective autophagy is facilitated by the presence 
of receptors such as p62 (sequestosome-1 or 
SQSTM1), OPTN (optineurin), CALCOCO2 (cal-
cium-binding and coiled-coil domain-containing 
protein 2), and BNIP3L (BCL2-interacting pro-
tein 3-like)23. 

There is evidence that mutation in these genes 
has a relation with human disorders. An altered 
autophagic process is associated with cardio-
vascular diseases, autoimmune diseases, neuro-
degenerative disorders, infections, myopathies, 
diabetes, and cancer24.

Types of Autophagy
Eukaryotic cells administer three types of au-

tophagy based on the delivery pathway of targets 
to lysosomes: macroautophagy (MA), microauto-
phagy (MI), and chaperone-mediated autophagy 
(CMA)25. MA is the most intensively studied type 
of autophagy in which time-worn proteins and 
organelles are engulfed by autophagosomes. Sub-
sequently, lysosomes combine with the created 
autophagosomes and form autophagolysosomes 
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(or autolysosomes) which provide a milieu for the 
degradation of proteins and organelles26. Other 
types of autophagy differ in the manner in which 
the material is delivered to the lysosome as in 
MI, the lysosome itself engulfs abundant, small 
cytoplasmic cargoes. In CMA, target substrates 
tagged with special C-terminal KFERQ motifs 
are recognized and transferred into the lysosomes 
by Hsc70 (Heat shock cognate protein of 70 kDa) 
and endosomal sorting complexes are required 
for transport I and III (ESCRT/III). Delivery of 
substrates to lysosomes occurs through the bind-
ing of Hsc70 to the lysosome-associated mem-
brane glycoprotein type 2A (LAMP2A)27,28. MA 
represents the canonical pathway of autophagy 
and has been more intensively decoded, we will 
focus on this type and use the term “autophagy” 
instead of MA in this review.

Autophagy Mechanisms
The mechanism of MA consists of several 

stages and the participation of numerous factors. 
The stages include initiation, nucleation, elonga-
tion, autophagosomal formation and maturation, 
lysosomal fusion, degradation, and recycling29.

Initiation
Intracellular and extracellular stimuli bring up-

stream autophagy factors and substrates togeth-
er in a specific site called pre-autophagosomal 
structure (PAS) for autophagosomal formation30. 
This stage is governed by the complex of Unc-
51-like kinases (ULK) which is recruited and 
incorporated into PAS. One of the most important 
regulatory and influential factors in this stage is 
the mechanistic target of rapamycin (mTOR) com-
plex 1 (mTORC1)31. In normal conditions, mTOR 
activation causes autophagy inhibition through 
the phosphorylation of ATG13 and blockage of its 
link to ULK1 to form the ULK complex. In stress-
ful conditions, mTOR is suppressed and causes 
the activation of ULK1 and ULK2. Ultimately, 
ATG13 along with ATG101, ATG9A, and the focal 
adhesion kinase (FAK) family kinase-interacting 
protein 200 (FIP200) form a ULK complex and 
anchored it to the PAS32. 

Nucleation
ULK complex causes phosphorylation and ac-

tivation of class III phosphatidylinositol 3-kinase 
(PI3K) complex including Beclin1/Vps34/AT-
G14L/Vps15/UVRAG/AMBRA1 which produce 
phosphatidylinositol 3-phosphate (PI3P). Follow-
ing, the isolation bilayer membrane called phago-

phore is formed and enriched by phosphatidyli-
nositol 3-phosphate (PI3P) and then is extended to 
a double-membrane vesicle called omegasome33. 
According to studies, these membranes have been 
found to come from the ER, Golgi apparatus mi-
tochondria, and plasma membrane34. Along with 
the formation of the phagophore, ATG proteins 
are recruited and help to enlarge the membrane. 
Bcl-2 and Bcl-XL can bind to Beclin1 and inhibit 
this step of the autophagy process. This inhibito-
ry effect is only related to the ER-localized Bcl-2, 
not the mitochondrial Bcl-235. 

Elongation
As the membrane expands, several ATGs are 

joining it. Two conjugation systems including 
ATG12/ATG5/ATG16L1 and microtubule-related 
protein light chain 3 (LC3) are essential path-
ways to regulate elongation36. ATG7 activates 
ATG12 which moves towards ATG10 and via 
its help is conjugated with ATG5 and makes 
ATG12/ATG5 complex. Then, ATG16L1 through 
non-covalent interaction binds to ATG12/ATG5 
complex. Moreover, ATG4 cleaves LC3 at car-
boxy terminus to produce LC3-I as a cytosolic 
free agent which is then conjugated to phos-
phatidylethanolamine (PE) of the membrane of 
the autophagosome with the help of ATG7 and 
ATG3. Ultimately, the LC3-II complex is pro-
duced which its presence in phagophore helps to 
autophagosome formation37.

Autophagosomal Maturation
During the autophagosome maturation ATG5, 

ATG12, and ATG16 and after maturation LC3-II 
detaches via ATG438. Then, syntaxin17 (STX17) 
is recruited to the autophagosome membrane and 
maturation is completed39.

Lysosomal Fusion, Degradation, 
and Recycling

For fusion of the autophagosome with lyso-
some presence of several proteins including solu-
ble N-ethylmaleimide-sensitive factor activating 
protein receptors (SNARE) complexes (VAMP7, 
VAMP3, VAMP8, and STX17), Rab proteins, 
and integral lysosomal proteins (LAMP-2) are re-
quired. Among these proteins, STX17 is the most 
important one in a way that fusion starts when the 
STX17 presents on the surface of the maturated 
autophagosome. During fusion, the structure of 
the inner membrane is degraded and the contents 
are exposed to lysosomal enzymes, and the deg-
radation process begins40.
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Autophagy Inducers
Autophagy is a mechanism by which cells 

adapt to environmental and nutritional stress-
es. Mutually, nutritional starvation and excess 
nutrient stress can promote autophagy. Energy 
starvation activates autophagy via the AMP-acti-
vated protein kinase (AMPK) signaling pathway. 
In this pathway, starvation activates LKB1 (liver 
kinase B1)-AMPK which can in turn directly 
activate the ULK-1 complex41. LKB1-AMPK can 
also suppress mTOR through TSC1-TSC2 (tu-
berous sclerosis complex 1-2) activation. Both of 
these routes cause autophagosome formation42. 
Also, DNA damage and hypoxia activate the 
AMPK pathway which leads to ULK-1 complex 
activation41. It was revealed that elevated concen-
trations of glucose, also induce autophagy main-
ly through the reactive oxygen species (ROS) 
pathway43. On the other hand, mTORC1 has a 
major role in autophagy induction in response 
to amino acid deprivation44. Excessive accumu-
lation of misfolded proteins in the endoplasmic 
reticulum (ER) can lead to ER stress. ER stress is 
one of the activating mechanisms of autophagy. 
This type of stimulation occurs via activation of 
ER membrane-associated proteins; protein kinase 
R-like kinase (PERK), endoplasmic reticulum 
inositol-requiring enzyme 1 (IRE1), and activa-
tion of transcription factor 6 (ATF6). PERK ef-
fects are due to the regulatory effects on LC3, 
ATG5, and eukaryotic initiation factor2 (eIF2) 
which finally inhibit the synthesis of unfolded or 
misfolded proteins45. The second mechanism is 
performed by disassembling BCL2 protein from 
Beclin1 through activating the IRE146. ATF6 as 
a transcription factor increases the expression of 
the ER chaperone, HSPA5 which then activates 
AKT47. Growth factors as other regulators of 
autophagy, trigger the AKT pathway through 
activating PI3K which inhibits the TSC1-TSC2 
complex. TSC1-TSC2 suppression countermands 
mTOR inhibition which enhances mTOR activity 
resulting in autophagy inhibition. Consequently, 
PTEN (phosphatase and tensin homologue) can 
disable this pathway via blocking PI3K activation 
and reverse the effect of mTOR inhibition48.

Autophagy and Cancer
The first finding indicating the relation be-

tween autophagy and cancer was the presence 
of deleterious mutations in the Beclin-1 in breast, 
prostate, and ovarian cancer patients49.

In the early stages of cancer, autophagy shows 
tumor-suppressor effects via oncoprotein degra-

dation, oxidative stress elimination, maintain-
ing genomic integrity, defenses against bacterial 
and viral pathogens, and participation in the 
development of immune responses. Hence, tu-
mor initiation and progression are inhibited by 
autophagy at the early stages of cancer50. An-
other tumor suppression effect of autophagy is 
its role in maintaining genomic integrity. Some 
disorder in the autophagy process causes DNA 
damage and increases cancer risk51. However, 
in advanced stages where the hypoxia becomes 
dominated, autophagy functions providing the 
necessary materials for cells to deal with the 
hypoxia and nutrients cause an improvement in 
tumor cells survival, metastasis, and suppres-
sion apoptosis52,53. With more details, tumor cells 
usually have a problem supplying their needful 
glucose. In this condition AMPK-mediated auto-
phagy is activated in tumor cells, also blockage of 
glycolysis due to lack of glucose causes ER stress 
which activates autophagy54. In the same way, 
amino acid depletion activates AMPK-mediated 
autophagy. The mentioned conditions lead to au-
tophagy-mediated cell survival which promotes 
tumor growth55. Therefore, autophagy functions 
as a double-edged sword based on type, stage, 
and genetic context of tumor cells because as 
mentioned above it can lead tumor cells to auto-
phagy-mediated cell survival and enhance tumor 
development, in contrast, it can also steer cancer 
cells to autophagy-mediated cell death and block 
tumor development56. 

In clinical application, chemotherapeutic 
agents like 5-fluorouracil (5-FU), gemcitabine, 
and cisplatin cause DNA damage and induce 
AMPK-mediated autophagy in cancer cells that 
lead to cancer cell survival57-59. Also, exposing 
infrared radiation (IR) to tumors activates au-
tophagy in tumor cells and makes them survive 
via DNA damage and mTOR inhibition. Howev-
er, in some cases usage of conventional cancer 
treatments causes activation of autophagy and 
developing drug resistance. In consequence, tar-
geting autophagy was suggested as a therapeutic 
option in cancer therapies60. Using a mixture of 
chemotherapeutics and autophagy inhibitors such 
as Bafilomycin, Chloroquine (CQ), and 3-meth-
yladenine (3MA) can overcome drug resistance 
and block autophagy-mediated cell survival and 
steer cancer cells to cell death61. 

As indicated previously the regulatory effects 
of autophagy as both tumor suppression and pro-
motion have also been identified in BC62. There 
is evidence that factors and molecules involved 
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in the onset and progression of BC affect auto-
phagy through different pathways. For example, 
in the early stages of BC the activity of tumor 
suppressor genes, p53 and PTEN, trigger auto-
phagy and suppress tumorigenesis while along 
with tumor progression activation of oncogenes, 
Bcl-2 and PI3K/AKT, restrain stress responses, 
and suppress autophagy63. Furthermore, studies 
have been shown that in advanced stages of BC, 
oncogenic mTOR-activating proteins were upreg-
ulated64. On the other hand, mutations in genes 
expressing proteins involved in the early stages of 
autophagy such as Beclin-1 or BECN1 have been 
reported in almost all cases of BC49. Conventional 
approaches and even new targeted drugs such as 
anti-HER2 drugs, PI3K/AKT inhibitors, CDK4/6 
inhibitors, and immune checkpoint inhibitors can 
also affect the autophagy pathway and result in 
treatment resistance in some cases. In light of 
these findings, autophagy inhibitors have been 
suggested as an alternative therapeutic option in 
BC patients, but more studies are needed65. Given 
that the relationship between autophagy and BC 
has been thoroughly studied in another review 
article64, we will not elaborate further here.

Autophagy and MiRNAs
Numerous studies have shown that autophagy 

and miRNAs have a bilateral relationship. Auto-
phagy performs an important role in maintaining 
the homeostasis of miRNAs and miRNAs have 
regulatory effects on autophagy both in vivo and 
in vitro due to their gene expression regulation 
effects on ATGs and proteins involved in signal-
ing pathways related to autophagy. Depending on 
whether the tumor cells are under metabolic or 
therapeutic stress, miRNAs-mediated autophagy 
can have either pro-survival or pro-death effects. 
The relation between miRNAs and autophagy not 
only affects the different stages of tumor growth 
and development but in the same way affects the 
response to different cancer therapies such as 
radiotherapy and chemotherapy66. For the first 
time in 2009, Zhu et al67 showed that miR-30a 
downregulates the expression level of Beclin-1 
to suppress rapamycin-induced autophagy in tu-
mor cells and further studies have shown that 
miRNAs can affect all stages of autophagy. This 
regulation can occur by both types of tumor-sup-
pressor and oncomiRs, leading to activation or 
inhibition of autophagy68. In squamous cell car-
cinoma miR-885−3p targets ULK2 and inhibits 
autophagy in response to cisplatin treatment69. 
Under hypoxic conditions of hepatocellular carci-

noma (HCC) cells, miR-375 decreases ATG7 and 
inhibits autophagy in vitro and in vivo70. MiR-30d 
suppresses Beclin-1 and increases the response 
to cisplatin in thyroid carcinoma cells71. MiR-
140-5p by targeting ATG12 causes an inhibition 
of autophagy which suppresses the survival of 
colorectal cancer stem cells72. In cervical cancer, 
increased expression of miR-224-3p inhibits au-
tophagy via targeting FIP200. MiR-17 can inhibit 
the formation of autophagolysosome by targeting 
Rab7 GTPase members73. A study by Yuan et al74 
showed that increasing the expression level of tu-
mor-suppressor miR-375 in gastric cancer inhib-
its autophagy via targeting the mTOR pathway. 
In another study on gastric cancer, increasing 
the expression level of miR-21 led to inhibition 
of autophagy via the PI3K/Akt/mTOR pathway 
which decreased cisplatin resistance75. These are 
just a few of the many studies that have been con-
ducted on the first step of autophagy and they are 
still ongoing revealing other miRNAs regulatory 
effects on different steps of autophagy. 

Autophagy and MiRNAs in BC
Like other cancers, the autophagy process in 

BC is affected by changes in the expression level 
of miRNAs and several studies have been re-
porting various autophagy regulating miRNAs at 
many points in BC76. 

MiR-20a and miR-20b involvement in autopha-
gy regulation via targeting FIP200/ RB1CC1, as an 
important part of the ULK complex, was shown in 
MCF-7 and MDA-MB-231 cells by Li et al77. The 
study revealed that overexpression of miR-20a and 
miR-20b inhibits basal and rapamycin-induced au-
tophagy which causes inhibition in cancer progres-
sion. However, in another study, Liu et al78 showed 
the ability of miR-20a to inhibit basal and nutrient 
starvation-induced autophagy via targeting Be-
clin-1, ATG16L1, and SQSTM1 in MDA-MB-231 
and MCF-7 cells and unexpectedly improved tu-
mor initiation and growth. MiR-23a is among 
miRNAs involved in the regulation of autophagy 
in BC by targeting X-linked inhibitor of apopto-
sis (XIAP) as one of the autophagy inhibitor pro-
teins in the cell79. MiR-92b has been introduced as 
a tumor suppressor in BC through the inhibition of 
viability and invasion. Autophagy-inducing stimu-
li, starvation, and rapamycin cause overexpression 
of miR-92b that negatively regulates the histone 
methyltransferase enhancer of zeste homolog 2 
(EZH2) which leads to promotion of autophagy80. 
Overexpression of miRNA-96-5p inhibits auto-
phagy and apoptosis and enhances tumorigenesis 
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of human BC cells. Furthermore, upregulation of 
miR-96-5p suppresses autophagy through inhibit-
ing LC3II production and degradation of p62. This 
inhibitory effect of miR-96-5p happens through 
targeting forkhead box protein O1 (FOXO1). Shi et 
al81 showed that increased expression of miR965p 
not only improves proliferation, migration, and 
invasion but also inhibits basal and starvation-in-
duced autophagy through targeting FOXO1 in 
MCF7 and MDA-MB-231 cells. Frankel et al82 
conducted an in vitro and in vivo study and found 
miR-101 as one of the effective inhibitors of basal-, 
etoposide- and rapamycin-induced autophagy in 
BC. They revealed ATG4D, STMN1, and Rab5A 
as targets of miR-101. Ai et al83 observed a relation 
between decreased expression of miR-107 and 
suppressed autophagy process and tumor cell pro-
liferation via targeting high mobility group protein 
B1 (HMGB1). They suppressed the expression of 
HMGB1 and detected increased expression of p62 
protein and decreased Beclin1 protein in MDA-
MB-231 and MDA-MB-453 BC cells. 

Decreased expression of miR-124-3p on BC 
tissues and cell lines was shown in a study 
by Zhang et al84. They showed that miR-124-
3p affects the autophagy process via targeting 
Beclin-1. Increased expression of miR-224-5p 
in metastatic and non-metastatic BC cell lines 
was reported to inhibit autophagy through sup-
pressing the TGF-β/Smad4 signaling pathway 
which is one of the autophagy activating path-
ways that increased ATG5, ATG6, and ATG7 
proteins85. MiR-372 suppresses autophagy and 
tumor growth in BC by targeting p6286. An in 
vitro study described that down-regulation of 
miR-486-5p would increase autophagy through 
targeting PTEN  in MCF-7 BC line87. MiR-638 
as an oncomiR displayed the regulatory effects 
on the autophagy process via targeting ULK1 
and DACT3, as a regulator of the Wnt/β-catenin 
signaling pathway and induced autophagy via 
increasing cellular expression level of LC3-II88. 
Furthermore, miR-638 has been linked to auto-
phagy in controversial ways. In a case-control 
study, ATG5 was reported to be targeted by miR-
638 which suppresses the autophagy process and 
improves tumor progression89. MiR-1275 has 
been shown that to inhibit the expression of 
ATG7 and suppression of autophagy and tumor 
progression. The inhibitory effect of miR-1275 
is related to the formation of the mature auto-
phagosome. There is another study that showed 
miR-1275 could target ULK1 and suppress auto-
phagy90. Another miRNA that promotes autoph-

agy in BC 91 is let-7a while exerting the opposite 
effect in other cancers like lung92 and gastric93. 
MiR-1910-3p has an oncomiR role in BC and 
its increased expression causes an improvement 
in proliferation, metastasis, and autophagy both 
in vitro and in vivo in BC. Moreover, delivering 
exosomes enriched with miR-1910-3p to BC and 
mammary endothelial cells induced autophagy 
and inhibited apoptosis94. Additionally, there are 
studies have been shown that miRNAs including 
miR-25, miR-30a, miR-30c-1, miR-149, miR-221, 
miR-376b, miR-489, miR-519a, miR-611, miR-
615-5p, miR-659, miR-636, miR-659, miR-675, 
miR-1303, miR-1308, miR-1908, miR-1914, miR-
1915, miR-2861, miR-3184, miR-4292, and miR-
4259 can target ULK complex components and 
regulate autophagy in BC64 ,95 (Figure 1). In this 
review, we focused on the numerous studies in 
the field of autophagy regulating miRNAs in BC 
that modulate BC responses to therapies and the 
possibility of using them as a therapeutic target.

Effects of Autophagy and MiRNAs on 
Hypoxia of BC

Hypoxia is one of the pathologic features that 
affects various tumor processes such as metas-
tasis, angiogenesis, recurrence, and chemoresis-
tance in BC96. In response to hypoxia generated 
in the tumor microenvironment, tumor cells in-
crease the expression of hypoxia-inducible factor 
(HIF)-197 which regulates genes and intracellular 
pathways including hypoxia‑regulated miRNAs 
(HRMs)98 and autophagy99. Regarding BC, in 
a study by Hu et al100 on breast cancer stem 
cells (BCSCs), they found HIF‑1‑mediated down-
regulation in the expression level of miR-137 
under hypoxia conditions. Following miR-137 
restoration, mitophagy/autophagy is inhibited via 
targeting FUN14 domain-containing protein 1 
(Fundc1) and promotes tumorigenesis. Fundc1 
as a mitochondrion membrane protein promotes 
autophagy and upregulates the expression of Be-
clin1, ATG5, and ATG7.

Effects of Autophagy and miRNAs on 
Chemotherapy of BC

One of the most fundamental therapies for 
patients with BC is chemotherapy, whether it is 
used alone or in combination with another treat-
ment method. Different types of chemotherapy 
drugs with different mechanisms are used in BC 
including anthracyclines (doxorubicin and epiru-
bicin), taxanes (paclitaxel and docetaxel), plati-
num (cisplatin), etc. Despite the promising results 
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of chemotherapy in reducing the growth and 
development of tumor cells, resistance to these 
agents reduces the therapeutic effects and also 
leads to tumor metastasis and recurrence1. The 
results of various studies revealed an association 
between autophagy and drug resistance not only 
in BC but also in different types of other cancers. 
This includes colorectal, bladder, ovarian, pros-
tate, osteosarcoma, and malignant glioma101. 

Generally, three types of association between 
autophagy and drug resistance have been ob-
served in BC. First, autophagy by protecting 
tumor cells against external stressors, such as 
chemotherapy drugs, develops resistance. Indeed, 
in some cases inhibition of autophagy reversed 
the resistance to chemotherapy drugs. This type 
of autophagy is designated cytoprotective auto-
phagy that acts as an important inhibitory factor 
in the treatment of BC patients. Unlike the first 
case, some studies have shown that increased 
autophagy enhances the sensitivity of BC cells 
to chemotherapy drugs and promotes different 
types of cell death. Furthermore, any change in 
different stages of autophagy can affect the pro-
cess of drug resistance in BC102. MiRNAs are one 
of the critical factors involved in regulating the 

sensitivity of tumor cells to several chemothera-
py drugs103. They can increase the sensitivity or 
the resistance of BC tumor cells in response to 
chemotherapeutic agents due to their effects on 
the proteins involved in the autophagy process102. 

Resistance to paclitaxel (PTX) is among those 
reasons for death associated with treatment fail-
ure in BC patients. Shi et al104 demonstrated that 
up-regulation of miR-129-5p increased paclitaxel 
sensitivity of MCF-7 cells which led to inhibition 
of autophagy and promoting apoptosis by tar-
geting HMGB1. The presence of BCSCs causes 
chemoresistance, recurrence, and metastasis of 
tumor cells105. Ueda et al106 showed that miR-27a 
acts as a master regulator for BCSCs through 
regulating autophagy. Overexpression of miR-27a 
increased the sensitivity of MCF-7 and MDA-
MB-231 cells to PTX and doxorubicin (DOX) 
via suppressing autophagy and affecting p62. 
The involvement of miR-18a in PTX resistance 
was shown in TNBC cells. PTX resistant cell 
line, MDA-MB-231/PTX cells, showed a higher 
level of miR-18a and autophagy in comparison 
with MDA-MB-231 cells. The study revealed that 
overexpression of miR-18a inhibited mTOR ex-
pression which further increased autophagy and 

Figure 1. The roles of miRNAs in regulating the autophagy process in breast cancer. Upon the presence of stimuli, the 
autophagy process is induced and consists of several different stages; initiation, nucleation, elongation, autophagosomal 
formation and maturation, lysosomal fusion, degradation, and recycling. miRNAs exert their dual regulatory effects by 
affecting the expression of components involved in different stages of autophagy. In the figure, the proteins involved in the 
stages of autophagy are shown in different colors, and their regulating miRNAs are shown in pink boxes.
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resistance against paclitaxel. Moreover, usage of 
autophagy inhibitor, Bafilomycin A1, increased 
apoptosis and sensitivity to PTX107. 

It has been shown that miR-489 has tumor 
suppressor effects in BC and inhibits the au-
tophagy process108. Soni et al109 showed that 
suppressing autophagy through the restoration 
of miR-489 in the BC cell line increased the 
sensitivity toward DOX via targeting lysosomal 
protein transmembrane 4 beta (LAPTM4B) as 
one of the important factors in autophagosome 
maturation in vivo and in vitro. Furthermore, 
Liang et al110 reported that upregulation of miR-
142-3p as a tumor suppressor miRNA in BC 
inhibited autophagy and improved the chemo-
sensitivity toward DOX through the targeting 
HMGB1 in the MCF-7 cell line. They showed 
that DOX-resistant cells had low expression of 
miR-142-3p and a high level of autophagy. 

Regarding the second relation between auto-
phagy and drug resistance, in an in vitro study 
on HS578T cell line, overexpression of miR-
181a-5p negatively regulated vitamin D receptor 
(VDR) as an autophagy regulator protein which 
increased autophagy and then improved sensi-
tivity to cisplatin111. In a similar study, the usage 
of isoliquiritigenin (ISL) as an anti-cancer agent, 
repressed miR-25 expression. Upregulation of 
miR-25 suppressed autophagy through target-
ing ULK1 and improved the chemoresistance 
in epirubicin-resistant BC cells (MCF-7/ADR)112. 
Furthermore, in a study by Li et al113 increased 
expression of miR-125b-5p enhanced autophagy 
via negative regulation of peptidylarginine deimi-
nase 2 (PAD2) enzyme which has an inhibitory 
effect on mTOR. Increased autophagy further in-
creased the sensitivity to tamoxifen and improved 
docetaxel effects as combination therapy on the 
tamoxifen-resistant cell line.

Effects of Autophagy and MiRNAs on 
Radiotherapy of BC

One of the most important treatment mo-
dalities used for BC patients is radiotherapy, 
which leads to killing tumor cells via generat-
ing oxidative damage, membrane permeability, 
chromosome aberrations, metabolic imbalances, 
and activation of signaling pathways including 
apoptosis and autophagy. Indeed, DNA dam-
age, ER stress, dysfunctional mitochondria, and 
elevated Ca2+ levels are among the causes of 
radiation-induced autophagy in tumor cells114. 
Furthermore, radiotherapy through modulation 
of the immune system and tumor microenvi-

ronment has anti-cancer effects. Recent studies 
show that radiation-induced autophagy via im-
pressing antigen presentation, generating dam-
age-associated molecular patterns (DAMPs), 
and releasing of IFN-γ improves anti-tumor 
responses115. Depending on the severity and du-
ration of radiotherapy, radiation-induced auto-
phagy shows bi-lateral effects. When the amount 
of stress is low, autophagy compensates for 
the complications and makes resistance to ra-
diotherapy (cytoprotective autophagy) and im-
proves tumor cell survival, but with the increase 
in stress severity autophagic cell death occurs116. 

On the subject of BC, autophagy led to an im-
provement in tumor cell survival when radiother-
apy was applied to the MDA-MB-231 cell line 
through PI3K-Akt mTOR pathway interaction117. 

Recent studies have indicated the involve-
ment of miRNA in autophagy-mediated radia-
tion resistance of BC tumor cells116. Meng et al118 
showed that miR-26b negatively regulated the 
DNA damage-regulated autophagy modulator 
1 (DRAM1) and made a suppression in auto-
phagy process in MCF-7 cells. Following miR-
26b over-expression autophagy was inhibited 
and sensitization to radiotherapy was increased. 
Decreased expression of miR-129-5p caused 
an increase in the expression of HMGB1 and 
induced irradiation-induced autophagy which 
protects BC tumor cell survival. Along with the 
overexpression of miR-129-5p, the sensitization 
of MDA-MD-231 cells against irradiation was 
improved119. In another interesting study, Yi et 
al120 found that miR-199a-5p has a dual regu-
latory effect on irradiation-induced autophagy  
was inhibited via DRAM1 and Beclin1. They 
showed that by over-expression of miR-199a-5p 
irradiation-induced autophagy in MCF-7 cells, 
whereas this miRNA induced irradiation-in-
duced autophagy in MDA-MB-231 cells. Con-
sidering the different expression patterns of 
miR-200c in BC cell lines, Sun et al121 showed 
that decreased expression of miR-200c has a 
relation with radioresistance in MDA-MB-231 
cells through targeting ubiquilin 1 (UBQLN1) 
which plays a role in autophagosome formation. 
Along with the ectopic expression of miR-200c, 
autophagy was inhibited and radiosensitivity 
was increased. 

Effects of Autophagy and miRNAs on 
Endocrine and Targeted therapy of BC

Endocrine therapy (ET) also called hormone 
therapy is a type of therapy in which hormones 
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especially estrogen amounts are decreased, or 
their functions are blocked. This therapy is used 
only in hormone-receptor-positive BC patients 
and involves a variety of medications like tamox-
ifen, fulvestrant, aromatase inhibitors, etc122. ET 
reduces recurrence and mortality rate in BC 
patients and not only improves the quality of life 
but also has the fewest side effects compared to 
other methods123. However, drug resistance limits 
therapy efficacy. Among the factors that cause 
ET resistance, changes in intracellular pathways 
such as autophagy and miRNAs expression pat-
terns are among the important ones124. In vitro 
study proposed miR-101 as an autophagy in-
hibitor through targeting ATG4D, RAB5A, and 
STMN1. Overexpression of miR-101 restrained 
resistance toward 4-hydroxytamoxifen (4-OHT) 
and increased MCF-7 cells sensitivity82. In-
creased expression of miR-451a suppressed au-
tophagy and improved tamoxifen sensitivity in 
MCF-7 and LCC2 BC cells via regulation of 
14-3-3ζ protein125. By disrupting cell amino acids 
level via targeting an amino acid transporter, 
Solute Carrier Family 6 Member 14 (SLC6A14), 
miR-23b-3p induced autophagy and drug resis-
tance in BC against tamoxifen and fulvestrant126. 
Knockdown of miR-21 induced autophagy via 
suppressing PI3K-AKT-mTOR pathway and in-
creasing Beclin-1 and LC3-II expression level 
which promoted the sensitivity toward tamoxifen 
and fulvestrant in MCF-7 cells127. MiR-214 was 
found to suppress autophagy through activation 
of the PI3K-Akt-mTOR pathway and increasing 
uncoupling protein 2 (UCP2). Inhibited autoph-
agy increased sensitivity toward tamoxifen and 
fulvestrant in MCF-7 cells128. Regarding targeted 
therapy, trastuzumab or Herceptin is a monoclo-
nal antibody used for HER-2 positive BC patients 
in early and advanced stages129. MiR-567 showed 
an inhibitory effect on the autophagy process and 
resistance to trastuzumab via targeting ATG5 in 
BC patients and cell lines. Although its expres-
sion level is downregulated in trastuzumab-resis-
tant cells, increased expression of miR-567 sup-
pressed autophagy and enhanced the sensitivity 
to trastuzumab in vitro130. 

Discussion

In light of the high prevalence, heterogeneity, 
and resistance to therapy observed in BC, a bet-
ter understanding of the molecular mechanisms 
involved in tumor progression and response to 

therapies could remove existing barriers to thera-
py development and enable new ones to be devel-
oped. It has been shown that autophagy is one of 
the intracellular degradation pathways implicated 
in tumorigenesis, responsiveness, or resistance 
to various therapies in BC. Currently, studies are 
aimed at identifying therapeutic agents that can 
target multiple pathways, of which miRNAs are 
one of the best that have the ability to regulate 
several pathways including autophagy in multiple 
steps. Targeting autophagy regulating miRNAs 
is proposed as a treatment procedure that would 
increase clinical outcomes and reverse therapy 
resistance (Table I). 

However, due to the bilateral effects of miR-
NAs studied, it seems that targeting them re-
quires consideration of factors which previous 
studies131 have shown their regulatory effects 
on the expression and effects of miRNAs. The 
factors currently identified are genetic or epi-
genetic alterations of DNA sequences that code 
miRNAs, transcriptional regulation, alterations 
of mRNA target sites. Hence, there is a possibil-
ity that these factors directly or indirectly affect 
the miRNA’s effect on the autophagy pathway. 
It would be helpful to consider these factors in 
targeting autophagy regulating miRNAs. Here, 
as discussed in the chemotherapy section of the 
manuscript, miR-181-5p, miR-25, and miR-125 
induced autophagy which resulted in enhanced 
sensitivity to chemotherapy drugs, whereas oth-
er miRNAs by inducing autophagy caused drug 
resistance. In radiotherapy, while overexpres-
sion of miR-199-5p caused inhibition in IR-in-
duced autophagy in MCF7 cells, it improved 
IR-induced autophagy and basal autophagy in 
MDA-MB-231 cells. Furthermore, miR-20a has 
presented different results in terms of inducing 
autophagy and enhancing BC cell progression 
and/or death. 

Conclusions

The importance and role of autophagy-regulat-
ing miRNAs in the growth and development of 
cancer have been demonstrated in recent years. 
In order to develop an effective therapy based on 
miRNAs that regulate autophagy in BC, many 
factors must be taken into account. MiRNA it-
self, cell line type and induced autophagy effects 
are some of the things that have been identified by 
studies so far and further investigations are need-
ed. Although there have been a few cases where 
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the results were unexpected, in general, it seems 
that focusing on autophagy-regulating miRNAs 
as biomarkers or therapeutic targets could be an 
important step toward improving BC patients’ 
therapies.
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