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Abstract. – OBJECTIVE: Diabetes mellitus 
(DM) has been considered a major problem be-
cause of its related complications and growing 
incidence worldwide. Testicular dysfunction has 
become a predominant diabetic complication 
characterized by impaired reproductive function 
and testicular damage. Stevia rebaudiana Berto-
ni has been known for its antioxidant effect on 
diabetes, inflammation, and obesity. The current 
study investigates the protective effect of Stevia 
on diabetic-induced testicular injury. 

MATERIALS AND METHODS: Sprague Daw-
ley adult male rats were divided into three groups: 
the control group, the diabetic group, and the dia-
betic + Stevia group, type 2 diabetes is induced by 
a high-fat diet (HFD) and a single dose of 35 mg/
kg streptozotocin injection. The effects of Ste-
via were evaluated regarding biochemical, oxida-
tive stress, histopathological and ultrastructural 
changes, and immunohistochemical expression 
of vascular endothelial growth factor (VEGF), 
vascular cell adhesion molecule-1 (VCAM-1), re-
ceptor-interacting serine/threonine-protein ki-
nase 1 (RIPK 1), and caspase 3.

RESULTS: Stevia extract attenuated the dia-
betic-induced oxidative stress, restored the tes-
ticular architecture, and decreased testicular 
damage, inflammation, necroptosis, and apop-
tosis by upregulating VEGF and downregulating 
VCAM 1, RIPK 1, and caspase 3.

CONCLUSIONS: The current study highlights 
the importance of Stevia as an antioxidant anti-in-
flammatory that ameliorates diabetic-induced 
testicular injury by modulating oxidative stress, 
inflammation, necroptosis, and apoptosis. 
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Introduction

Diabetes mellitus (DM) has been considered 
a major concern because of its related complica-
tions and growing worldwide incidence1. In 2045, 
693 million people, or almost 10% of the world’s 
population, are expected to have diabetes2. 

Lately, studies2 have revealed that testicular 
dysfunction has become a predominant diabetic 
complication. Approximately hypotestosteronae-
mia affects 94.4% of diabetes patients, on avera-
ge3, and diabetic individuals have up to ten times 
the rate of sexual and reproductive problems as 
nondiabetic patients. decreased testosterone levels 
and impaired reproductive function characterize 
diabetes-induced testicular dysfunction2. Howe-
ver, the precise mechanism behind diabetic te-
sticular dysfunction remains unknown, and no 
particular therapies are currently available4.

Diabetes impacts many biological systems, most-
ly due to hyperglycaemia-induced reactive oxygen 
species (ROS) production, resulting in oxidative 
stress5. Diabetes has been linked to lower fertility 
in male animal models6 and pregnancy rates in 
diabetic male couples7. These outcomes are owed 
to oxidative stress, inflammation, and germ cell 
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apoptosis8. Furthermore, diabetic rats show up-re-
gulated apoptotic pathways in testes, this might 
inhibit germ cell proliferation and spermatogenesis9. 

Stevia rebaudiana Bertoni has been known for 
its antioxidant effect on diabetes, inflammation, 
and obesity10. Furthermore, Stevia extract has 
been shown to control blood glucose, decrease 
inflammatory markers, and minimize oxidative 
state in diabetic rats11,12.

Levels of Malondialdehyde (MDA) and an-
tioxidant enzymes (GSH) have been identified as 
oxidative stress markers13. GSH is a powerful en-
zyme that protects cells against hydrogen peroxi-
de produced within them14, whereas MDA is a 
damaging by-product of fatty acid peroxidation12.

As part of diabetic-induced testicular failure, DM 
causes apoptosis, decreased diameter of the semi-
niferous tubules, and spermatogenetic cells15. The 
two indicators of spermatogenic failure are semini-
ferous tubule atrophy and spermatogenic cell loss16. 
Testicular apoptosis might be mediated by oxidati-
ve stress and decreased angiotrophic substances17. 
Vascular endothelial growth factor (VEGF) is a 
neurotrophic and angiotrophic factor that promotes 
endothelial cell proliferation and increases vascular 
wall permeability. It is also vital for germ cell ho-
meostasis. Both Leydig and Sertoli cells generate 
VEGF and contain VEGF receptors16. 

Vascular cell adhesion molecule 1 (VCAM-1) is 
primarily expressed by endothelial cells, and as-
sists the adhesion and migration of immune cells, 
leading to inflammation. Hyperglycemia-induced 
oxidative stress causes endothelial dysfunction 
through inflammation. Additionally, diabetes pro-
vokes endothelial dysfunction and inflammation18. 

Necroptosis is a type of controlled cell death 
that regulates the destiny of individual cells during 
embryonic development and adulthood19,20, and it 
was reported that necroptosis is one of the basic 
processes of male reproductive system aging21. 

This work aims to study the protective effect 
of Stevia on diabetic-induced testicular injury 
through the histopathological, ultrastructural 
examination, and immunohistochemical study of 
VEGF, VCAM1, apoptosis, and necroptosis.

Materials and Methods

Animals 
In this study, a total of eighteen mature male 

albino Sprague Dawley rats with a weight range of 
180-200 g were utilized. For acclimatization, the 
rats were housed for two weeks in vented plastic 

cages under standardized conditions, which inclu-
ded approximately 12 hours of daylight per day 
and room temperature. The animals were fed with 
conventional laboratory rat chow and provided wi-
th free access to water. It is important to note that 
all studies were conducted in compliance with the 
Ethical Committee on Animal Testing’s Laws and 
Regulations, with approval code (R/125), Faculty 
of Veterinary Medicine, Mansoura University.

Experimental Design
Three groups of six rats each were formed as 

follows: the control group rats (six nondiabetic rats) 
were given 2 mL of distilled water orally. The dia-
betic group rats (6 diabetic rats) were given 2 mL of 
distilled water orally. The Stevia group rats (6 dia-
betic rats) receive dissolved Stevia extract in distil-
led water in a dose of 400 mg/kg via oral gavage for 
8 weeks22. The Stevia leaves were purchased from 
Agro-industry Product (SICAP), Cairo, Egypt, and 
the extract was prepared following the procedure 
described by El-Mesallamy et al23. The experiment 
lasted eight weeks after diabetes induction.

Induction of TYPE 2 DM
High-fat diet (HFD) was used to feed the rats 

in the diabetic groups (diabetic and Stevia rats) 
for 4 weeks, then a single 35 mg/kg of strepto-
zotocin (STZ) intraperitoneal injection24,25. AC-
CU-CHEK glucometer and strips (Roch Diagno-
stic Co., Germany) were used to check the blood 
glucose, diabetes was considered with blood glu-
cose equal to or above 200 mg/dl. 

Blood Sampling
At the end of the experiment – 8 weeks after 

induction of diabetes – the rats that had fasted 
overnight were anesthetized using an intraperito-
neal injection of sodium thiopental at a dose of 60 
mg/kg. Blood samples were collected by punctu-
ring the left ventricle and placed in EDTA-con-
taining tubes. The samples were then centrifuged 
to separate the serum. Insulin and testosterone le-
vels were measured using commercially available 
ELISA kits. The homeostasis model assessment 
(HOMA) insulin resistance (IR) index was deter-
mined using Mathe’s method from fasting insulin 
and fasting blood glucose26.

Tissue Sampling and Processing
At the time of sacrifices, the testicles were 

excised, and crossly cut. Part of the testis was 
fixed in Bouin’s solution for H&E staining, the 
other part was fixed in 10% neutral formalin for 
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immunohistochemical staining, and other sam-
ples were frozen immediately and stored at -80 C 
for detection of oxidative stress markers. 

For evaluation of MDA and GSH, segments of the 
testis were homogenized (10% w/v) in a pH 7.4 0.1 M 
Tris-HCl buffer. The homogenates were then centri-
fuged at 3,000 rpm for 20 minutes at 4°C. The resul-
ting supernatant from the kidney homogenate was 
employed in assessing oxidative stress indicators, 
MDA and GSH, using available commercial kits.

Tissue samples were routinely processed in 
ascending concentrations of ethanol (ethanol 70% 
for 1 hr, then 95% for 1 hr two times, then 100% 
for one hour, two changes, xylene, two changes, 
for one hour), then embedded in melted paraffin. 
The fixed tissue specimens were trimmed under a 
fume hood to fit into cassettes and labeled, then, 
for histological assessment, sections were stained 
with hematoxylin and eosin27, and to identify 
fibrosis, the Masson trichrome stain was used28.

For the electron microscopy analysis, a small 
piece of each rat’s testis was sliced into pieces 
and fixed in 4% glutaraldehyde in phosphate buf-
fer (pH 7.2) for 2-4 hours. The samples were then 
post-fixed in 1% osmium tetroxide. Afterward, 
they were dehydrated using a series of alcohols 
and embedded in Spurr resin embedding media. 
Semithin and ultrathin slices were cut using 
a Leica Ultracut R ultramicrotome (Austria). 
The semithin slices, which were about 1 µm 
thick, were stained with toluidine blue, while 
uranyl acetate and lead citrate were used to stain 
the ultrathin sections. Finally, the samples were 
viewed using a Philips C-100 Bio transmission 
electron microscopy (Philips/FEI Corporation, 
Eindhoven, The Netherlands) at 80 kV29.

Immunohistochemical Staining for 
Caspase3, VEGF, VCAM1 and RIPK1

Testicular sections (3-5 µm) were used for 
following the immunoperoxidase method for im-
munohistochemical staining25,30, and hydrogen 
peroxide (3%) was used to stop the endogenous 
peroxidase activity. The slices were then rinsed 
three times with phosphate-buffered saline (pH 
7.4) and treated in a water bath (95°C, 30 minutes) 
with sodium citrate buffer (0.01 M, pH 6.0) to 
recover antigens. After reaching room tempera-
ture, the slides were incubated for one hour with 
BSA (1%). The following primary antibodies were 
used and incubated overnight at 4°C: anti-caspa-
se-3 (ab2302, Abcam, Cambridge, UK, 1:100)25, 
anti-RIPK1 (ab72139, Abcam, Cambridge, UK, 
1:200)31, VCAM1 (ab134047, Abcam, Cambrid-

ge, UK, 1:200)32 and VEGF (ab1316, Abcam, 
Cambridge, UK, 1:100)33. The slices were then tre-
ated with horseradish peroxidase-conjugated se-
condary antibodies (ab7097, Abcam, Cambridge, 
UK) at 37°C for 0.5 hours, followed by 30 minutes 
of labeled streptavidin-biotin (DETHP1000, Sig-
ma-Aldrich). The reaction was visualized using 
Diaminobenzidine/peroxidase substrate DAB 
(DAKO Company). Finally, the section slides we-
re counterstained with Mayer’s hematoxylin for 
one minute, washed with tap water for eight mi-
nutes, dehydrated with ascending grades of ethyl 
alcohol, cleared with xylol, and the coverslipped.

Morphometric Evaluation
Images were taken with an Olympus® SC100 

digital camera (Olympus Soft Imaging Solutions 
GmbH, Munster, Germany) and a light microsco-
pe. Image J software (National Institute of Health, 
Bethesda, MD, USA) was used to measure various 
parameters, including the average seminiferous 
tubule (ST) diameter, spermatogenic epithelium 
(SE) thickness, ST area (µm2), ST lumen area 
(µm2), SE area (µm2), SE area ratio, total ST area 
(µm2), and total interstitial area (µm2) according 
to the methods described by Sziva et al34. Addi-
tionally, in the Masson trichrome stained sections, 
the capsular thickness, and the area occupied by 
collagen fibers were measured, and for the im-
munohistochemical stained sections, the positive 
expression of Caspase-3, VEGF, VCAM, and RI-
PK-1 were measured.

Johnsen Scoring System
Testicular sections were assessed using John-

sen’s score on a scale of 1 to 1035. To evaluate 
spermatogenesis, each seminiferous tubule was 
scored on a scale from 1 to 10 based on the pre-
sence or absence of spermatogenic epithelium in 
the lumen. A score of 10 indicated normal sper-
matogenesis, with all sperm cell types arranged 
in an orderly manner, while a score of 1 indicated 
a complete lack of epithelial maturation.

Statistical Analysis
The data was tabulated, coded, and analyzed 

using analyzed using IBM SPSS Statistics for Win-
dows, Version 22.0. (IBM Corp., Armonk, NY, 
USA) and GraphPad Prism 9 (GraphPad San Diego, 
California, USA). Quantitative data were described 
using mean, and standard deviation for parametric 
data after testing normality using the Shapiro-Wilk 
test. To compare groups, the significance of diffe-
rence was statistically assessed using analysis of 
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variance (ANOVA), followed by Tukey’s test for 
a group of comparison, with a p≤0.05 considered 
statistically significant, depending on the absence 
of difference between groups36.

Results

Biochemical Results
The serum glucose, insulin levels, and HO-

MA-IR index showed statistically significant in-
creases in the diabetic rats, which Stevia ame-
liorated. Additionally, there is a non-significant 
alteration in insulin levels and a significant incre-
ase in blood glucose and HOMA-IR between the 
control and Stevia groups (Figure 1A, B, and C).

When compared to the control rats, the diabetic 
group’s serum testosterone level was considerably 
lower, but it was increased after Stevia treatment. 
No significant difference in serum testosterone 
levels in Stevia-treated rats was found when com-
pared to the control and diabetic rats (Figure 1D). 

Stevia considerably lowered MDA levels when 
compared to the diabetic rats, which dramatically 
increased MDA levels when compared to the con-
trol group. However, as compared to the control 
group, the MDA level in the Stevia group is still 
considerably higher. The diabetic group had consi-
derably lower GSH levels. However, in the Stevia 
group, it was reversed. Stevia restored GSH levels 
since there was no significant difference between 
the Stevia and control groups (Figure 1E-F).

Histological Results
Sections from the control rats stained with He-

matoxylin and Eosin showed seminiferous tubules 
formed of regular layers of seminiferous epithe-
lium, germ cells, and Sertoli cells at the base, with 
Leydig cells between the tubules. The lumen of 
tubules is filled with spermatids and spermato-
zoa (Figure 2A-B). In contrast, the diabetic rats 
showed distorted architecture in the form of va-
cuolated and necrotic irregular crossly-sectioned 
seminiferous tubules with a wide lumen and ex-
tremely widened interstitial space (Figure 2C-D). 
Some seminiferous tubules showed complete ar-
rest of spermatogenesis and degeneration of sper-
matogenic epithelium, resulting in a significantly 
decreased Johnsen score (p<0.0001) (Figure 2C-D, 
and G). These changes were markedly diminished 
in the Stevia group as they showed normal regular-
ly sectioned seminiferous tubules, narrow lumen, 
and relatively widened interstitial space (Figure 
2E-F); moreover, the Stevia group showed signifi-

cantly increased scores when compared with dia-
betic rats (p=0.0088) but still significantly lower 
than the control group (p=0.0278) (Figure 2G).

In Masson trichrome stained sections, the cap-
sule thickness was significantly increased in the 
diabetic rats, but it was reduced significantly in the 
Stevia group (p<0.0001), although it was still signi-
ficantly thicker than the control group (p=0.0072). 
The diabetic group showed a significant increase 
in interstitial fibrosis, but it was significantly de-
creased in the Stevia group (p<0.0001) (Figure 3).

Ultrastructural Results 
The electron microscopic examination of the 

control rats showed normal testicular ultrastructu-
re (Figure 4), In contrast, diabetic rats showed 
altered structure of seminiferous tubules in the 
form of distorted Sertoli cells lying on the thicke-
ned basal lamina, with the cytoplasm containing 
lipid droplets and swollen mitochondria (Figure 
5A). The spermatogonia show shrunken pyknotic 
nuclei, primary spermatocytes are distorted with 
malformed round spermatids (Figure 5B-C). Ley-
dig cells also show shrunken nuclei, lipid droplets 
in cytoplasm, and swollen mitochondria (Figure 
5D). Treatment with Stevia tends to restore the 
normal architecture of the seminiferous tubules 
with relatively normal cells (Figure 6).

Histomorphometric Evaluation and 
Image Analysis

The seminiferous tubule diameters were signi-
ficantly decreased in the diabetic group compared 
to the control group (p=0.002), and they were 
significantly increased in the Stevia-treated group 
(p=0.03) when compared with the diabetic group 
but still significantly decreased when compared 
with the control group (p=0.04) (Figure 7A). Mo-
reover, when compared to the control group, SE 
thickness decreased significantly in the diabetic 
group (p=0.005) and non-significantly in the Ste-
via group (p=0.06) (Figure 7B).

ST area, area, and SE area were significant-
ly decreased, and the ST lumen significant-
ly increased in the diabetic group (p=0.003, 
0.0003, and 0.009, respectively). Stevia rever-
ses this effect as it significantly increases SE 
area and decreases ST lumen area (p=0.03 and 
0.021 respectively), and ST diameter was not 
significantly increased (p=0.26). Additionally, 
the SE area ratio is significantly decreased in 
the diabetic group (p=0.0001) when compa-
red to the control and increased in the Stevia 
group (p=0.0005) when compared to the dia-
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betic group (Figure 7C). On the other hand, 
the spermatogenic epithelium area ratio signifi-
cantly increased (p=0.0005) in the Stevia group 

when compared with the diabetic group, which 
showed a significant decrease (p<0.0001) when 
compared to the control group (Figure 7D).

Figure 1. Biochemical results of the different groups. (ns=no significance, *significance vs. control group and # significance 
vs. diabetic group, *p<0.05, ***p≤0.001, ****p≤0.0001, ##p≤0.01, ###p≤0.001, and ####p≤0.0001). A, Fasting blood glucose; 
(B,) Serum insulin; (C), HOMA-IR; (D), Serum testosterone; (E), MDA level; (F), GSH level.
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As regards the total seminiferous tubule area 
and the total interstitial area, there was a signifi-
cant decrease in the total ST area and an increase 
in the total interstitial area in the diabetic group 
(p<0.0001) when compared to the control group 
and a significantly increased in Stevia group 
(p=0.0002) when compared to diabetic group 
(Figure 7E).

The area percentage of immuno-positive area 
stained against VEGF is significantly decreased 
in the diabetic rats compared with the control 
rats (p<0.0001); Stevia significantly ameliorates 
this reduction (p=0.0135), but VEGF expression 

is still significantly lower than the control rats 
(p=0.0194) (Figure 8).

There were weak expressions of VCAM1 
RIPK-1 and caspase 3 in the control group, 
in contrast, the diabetic group showed signi-
ficantly strong expression (p<0.0001), on the 
other hand, stevia significantly decreased the 
positive immune expression when compared 
with the diabetic rats (p<0.0001). Moreover, 
the VCAM1 and RIPK-1 immunoreactive areas 
were still significantly higher than the control 
rats (p=0.0196 and 0.0175), respectively (Figu-
res 9-11).

Figure 2. Microscopic images of 
H&E-stained control group testicular 
sections (A-B) showing typical regular 
crossly sectioned seminiferous tubules 
with tiny lumens filled with spermatids 
and spermatozoa (stars) and bordered 
with spermatogonia, many layers of 
spermatocytes (arrows), and Sertoli 
cells. In the control group, a thin 
interstitial gap (curved arrows) was found 
between tubules containing Leydig cells 
(arrowhead). Diabetic testicular sections 
(C-D) show vacuolated and necrotic 
irregular cross-sectioned seminiferous 
tubules (arrows) with a broad lumen 
(stars) and greatly dilated interstitial space 
(curved arrows), with no impact on Leydig 
cells (arrowhead). Normal regular cross-
sectioned seminiferous tubules (arrows) 
with a narrow lumen (stars), normal cells of 
Leydig (arrowhead) with slightly enlarged 
interstitial space (curved arrows) in the 
stevia-treated diabetic group (E-F). A, 
(C), (E), magnification x100 and (B), (D), 
and (F) magnification x400. G Johnsen 
score (* significance vs. control group and 
# significance vs. diabetic group, * p<0.05, 
*** p≤0.001, and ## p≤0.01).
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Discussion 

Diabetes is known to be injurious to many 
organs, resulting in several complications. As a 
result, developing efficient methods to eliminate 
or delay these complications is essential37.

STZ induces diabetes by causing a fast re-
duction in β-cells, which results in decreased insu-
lin supply. Hyperglycemia results from insufficient 
insulin release, which causes oxidative stress via 
ROS generation38,39, resulting in an increase in blo-
od glucose, a decrease in serum insulin, a loss of 

Figure 3. Microscopic pictures of Masson trichrome stained the control group of the testicular section showing normal 
capsular thickness (arrows) with no interstitial collagen deposition in the control normal group (A-C). Crossly sectioned 
testicular sections from the diabetic group (D-F) showed increased capsular thickness (arrows) with excess, bluish-stained 
interstitial collagen deposition (arrowhead). Crossly sectioned testicular sections from the stevia group (G-I) showed markedly 
decreased capsular thickness (arrows) with no bluish-stained interstitial collagen deposition. [(A), (D), (G), magnification 
x100, and (B), (C), (E), (F), (H), (I), magnification x400].
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Figure 4. An electron micrograph in the testis of control rats showing (A-B) a Sertoli cell (SC), spermatogonium (SG) lying 
on regular basal lamina (BL). The cell nucleus (N) appears large euchromatic, and oval with a prominent nucleolus (Nu) and 
well-defined nuclear envelope with a characteristic longitudinal fold (arrow). The cytoplasm shows mitochondria (M). C, 
round spermatid having a central rounded euchromatic nucleus (N). Well-formed acrosomal cap (arrowhead), mitochondria 
(M), and lysosomes (L) are found. D, Leydig cell nucleus (N) is oval in shape having fine granular euchromatin with a thin 
rim of peripheral chromatin condensation (H). The cytoplasm shows mitochondria (M). E, normal transverse sections in the 
middle piece (MP) and end piece (EP) of the sperm tail. [TEM scalebar (A-D) 5 micron and (E) 2 micron].

Figure 5. An electron micrograph in the testis of diabetic rats showing (A) distorted Sertoli cell (SC) lying on thickened basal 
lamina (BL), cytoplasm has swollen mitochondria (SM), and lipid droplets (LD). B, The spermatogonial nucleus (SG) is irregularly 
dark shrunken (PN) with peripheral chromatin condensation (H) and a large lipid droplet is found with dilated basal lamina (BL). C, 
distorted primary spermatocyte (Sp) surrounded by an irregularly indented cell membrane, malformed round spermatid (Sd) with 
deformed Golgi apparatus (curved arrow), vacuoles (V). D, a Leydig cell. The cell nucleus (N) is shrunken, with heterochromatin (H) 
and slightly dilated perinuclear space (arrow). Swollen mitochondria (SM) and vacuoles appear inside the cytoplasm (V). E, deformed 
middle pieces (MP) and slightly distorted end pieces (EP).  [TEM scalebar (A-B, D) 5 micron, (C) 10 micron and (E), 2 micron].
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body weight, and a lower testosterone level, which 
might be an indicator of testicular injury in diabe-
tic animals as reported before40. However, Stevia 
administration improves all the alterations, indi-
cating its anti-diabetic potential. This study is in 
line with previous research41,42 that has proven that 
Stevia extract decreases blood glucose in diabetic 
patients. This effect might be mediated by inhibi-
ting glucose absorption in the duodenum of rats43.

Steviol glycosides, the chemicals that give Ste-
via extracts their sweet flavor, are assumed to be 
responsible for Stevia’s anti-diabetic properties; 
however, the non-sweetener part may demonstra-
te insulinotropic actions43. Recent studies12 have 
confirmed the role of sativoside in stimulating in-
sulin secretion42,44. Besides, Stevia not only incre-
ased insulin but also decreased gluconeogenesis, 
resulting in lower serum glucose levels. Increased 
HOMA-IR in diabetic rats and a decrease after 
stevia treatment were recorded in this study, and 
it is consistent with previous reposts45,46.

Normal testosterone level is required in sperma-
togenesis to regulate and maintain the normal semi-
niferous tubules47. We found a significant reduction 

of testosterone in diabetic rats, which was also re-
corded in previous research8,48. Diabetes decreases 
plasma testosterone levels, and sperm count, and 
mediates germ cell apoptosis49. The testosterone 
level was improved after Stevia treatment, which 
was in line with previous research50 done on mice. 
On the other hand, Stevia administration in male 
rats showed an increased level of testosterone, but 
it had no statistical significance51,52. 

Insulin has been connected to testosterone se-
cretion due to the presence of insulin-specific re-
ceptors on Leydig cells. Also, the reduced insulin 
in DM has significantly decreased testosterone 
levels53. Oxidative stress is a major contributor 
to Leydig cell dysfunction in diabetic testes, and 
antioxidants may be able to reverse these defici-
ts54. The antioxidant treatment could be able to 
improve testosterone levels. Stevia’s antioxidant 
capabilities are ascribed to its high flavonoid, 
phenol, catalase, and peroxidase concentration12.

In this study, the diabetic rats showed elevated 
MDA and reduced GSH levels that indicate oxida-
tive stress, these are in line with previous repor-
ts55-57. Additionally, MDA was accused of ampli-

Figure 6. An electron micrograph in the testis of treated rats showing Sertoli cell (SC), spermatogonium (SG), and primary 
spermatocyte with big rounded euchromatic nucleus (Sp) resting on regular basal lamina (BL) of treated rats’ testis (A-B). The 
cell nucleus (N) is euchromatic, and oval, with a prominent nucleolus (Nu) and well-defined nuclear envelope (arrow). The 
mitochondria (M) are visible in the cytoplasm. The middle rounded euchromatic nucleus (N) of a round spermatid (C). The 
acrosomal cap (arrowhead), mitochondria (M), and cytoplasm are all well-formed, with a prominent Golgi apparatus (curved 
arrow). D, The nucleus of a Leydig cell (N) is oval in shape, with fine granular euchromatin and a thin rim of peripheral chromatin 
condensation (H). The mitochondria (M) are visible in the cytoplasm. E, transverse sections that are almost typical in the middle 
piece (MP) and end piece (EP) of the sperm tail [TEM scale bar (A, C) 10 micron, (B, D) 5 microns, and (E)=2 microns].
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fying the damages mediated by oxidative stress58. 
A significant reversion of the diabetic effect on 
MDA and GSH was found in this study following 
Stevia’s administration. Previous studies59 sup-

ported our findings as GSH supplementation was 
shown to ameliorate the adverse effect of DM on 
seminiferous tubules. In addition, the antioxidant 
treatment prevented testicular damage in rodents60. 

Figure 7. Morphometric evaluation of the seminiferous tubule parameters, (A) average seminiferous tubule diameter, (B) 
average spermatogenic epithelium (SE) thickness, (C) seminiferous tubule (ST) area, ST lumen area and spermatogenic 
epithelium area, (D) Spermatogenic epithelium area ratio and (E) total ST area and interstitial area. The data represented as 
mean ± SD, ANOVA and followed by Tukey’s test, (*significance vs. control group and #significance vs. diabetic group, * or 
#means p<0.05, ** or ## means p<0.01, *** or ### means p<0.001 and **** or ####means p≤0.0001).
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Figure 8. Microscopic images of VEGF immuno-stained cross-sectioned testicular tissue in the control group (A) indicate strong 
positive staining in the tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead), the diabetic group (B) showed 
decreased staining and the stevia group (C) showing moderate positive staining in the tubular epithelium (arrows) and interstitial cells 
of Leydig (arrowhead) [(A-B) magnification x400]. Image analysis (D) represents the immunoreactive area (%) in the stained sections 
(* significance vs. control group and # significance vs. diabetic group, * or # means p<0.05 and **** or #### means p≤0.0001). 

Figure 9. Microscopic images of testicular tissue immuno-stained against VCAM1 and exhibiting negative staining in the 
control group (A). Crossly sectioned testicular tissue from the diabetic group (B) showed strong positive brown staining in the 
tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead). Crossly sectioned testicular tissue from the stevia group 
(C) showing weak positive brown staining in the tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead) [(A-B) 
and magnification x400].  Image analysis (D) represents the immunoreactive area (%) in the stained sections (* significance vs. 
control group and # significance vs. diabetic group, * or # means p<0.05 and **** or #### means p≤0.0001). 
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Figure 11. Microscopic images of caspase-3 immuno-stained cross-sectioned testicular tissue in the control group (A) indicate 
negative staining. Crossly sectioned testicular tissue from the diabetic group (B) showed moderate positive brown staining in the 
tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead). Crossly sectioned testicular tissue from the stevia group 
(C) showing weak positive brown staining in the tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead) [(A-B) 
and magnification x400)]. Image analysis (D) represents the immunoreactive area (%) in the stained sections (* significance vs. 
control group and # significance vs. diabetic group, * or # means p<0.05 and **** or #### means p≤0.0001). 

Figure 10. Microscopic images of RIPK1 immuno-stained cross-sectioned testicular tissue in the control group (A) demonstrate 
negative staining. Crossly sectioned testicular tissue from the diabetic group (B) showed strong positive brown staining in the 
tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead). Crossly sectioned testicular tissue from the stevia group 
(C) showing weak positive brown staining in the tubular epithelium (arrows) and interstitial cells of Leydig (arrowhead) [(A-B) 
and magnification x400]. Image analysis (D) represents the immunoreactive area (%) in the stained sections (*significance vs. 
control group and # significance vs. diabetic group, * or # means p<0.05 and **** or #### means p≤0.0001).
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The major cause of diabetes complications 
has been identified as oxidative stress61. Dia-
betic-induced testicular oxidative stress is the 
primary cause of male diabetic reproductive 
failure9,62. Moreover, oxidative stress mediates 
the apoptotic death of diabetic testis37,57.

Sustained hyperglycemia has been shown to me-
diate systemic complications via many mechanisms, 
predominantly by a rise in ROS generation and oxi-
dative stress, which can directly lead to cellular dea-
th, or by depletion of the defensive antioxidant me-
chanisms, such as glutathione peroxidase synthesis63. 

It has been proven that diabetes has a delete-
rious effect on testicular structure in the form of 
seminiferous tubule atrophy and spermatogenetic 
cell apoptosis2. Likewise, Histological investi-
gation revealed that the seminiferous tubule had 
been disrupted, Sertoli cells had been lost, and 
Leydig cells had diminished, which has been 
reported before64. As mentioned previously, we 
observed a decrease in the thickness of the ger-
minal epithelium, which was also noted in a prior 
study65. Interstitial oedema has been reported 
as well37. Furthermore, the seminiferous tubules 
shrank, and spermatogonia, spermatocytes, and 
sperm cells became degenerated and vacuola-
ted66. We have found that treatment with Stevia 
could efficiently restore all these changes and at-
tenuate the development of testicular dysfunction 
which was reported also by Gholizadeh et al52.

Regarding electron microscopic examination, 
swollen mitochondria, lipid droplets, and chro-
matin condensation in Sertoli, Leydig, and sper-
matogenic cells were seen with subsequent al-
leviation of these changes in Stevia-treated rats, 
these changes were reported also by Trindade et 
al65. Spermatids with faulty mitochondria not only 
produce less ATP but also experience more oxi-
dative stress. The mitochondria are thought to be 
the major generator of free radicals, and their mal-
function is linked to diabetes-related alterations67. 

Few research68,69 has focused on testicular in-
terstitial fibrosis in DM that impairs testostero-
ne production and spermatogenesis, resulting in 
infertility and sexual dysfunction. Antioxidan-
ts and/or anti-inflammatory medications may be 
able to prevent diabetic-induced oxidative stress 
and inflammatory responses70. However, testicular 
interstitial fibrosis induced by long-term hyper-
glycemia is difficult to be treated68,69. Testicular 
interstitial fibrosis may result in permanent oligo-
zoospermia and persistently low sperm motility71. 
This study confirmed previous literature regar-
ding fibrosis in diabetic rats’ testis and recorded 

its amelioration in the Stevia-treated group and it 
is the first one to our knowledge that commented 
on testicular interstitial fibrosis following Stevia 
administration. DM was found to enhance the 
expression of TGF-beta1 in testis, and this was 
parallel with its progression. Moreover, testicular 
interstitial fibrosis causes Leydig cell apoptosis, 
decreasing testosterone production and hence the 
amount and activity of germ cells71. Tissue fibrosis 
is thought to be a reparative process that occurs 
in reaction to cell loss or a direct hyperglycemic 
insult. Excessive fibrosis is associated with poor 
testosterone and decreased sperm production72,73. 

VCAM-1 is a crucial regulator of the adhesion of 
leukocytes and their movement through endothe-
lial cells by interacting with α4β1 integrin. This 
integrin found on leukocytes sticks to VCAM-1 
present in endothelial cells, leading to the acti-
vation of signaling pathways within the activated 
endothelial cells, which enables the movement of 
leukocytes74. VCAM-1 was initially discovered 
as a glycoprotein on the surface of endothelial 
cells75. However, under chronic conditions in some 
diseases, VCAM-1 is also expressed on other cells, 
including Sertoli cells and cancer cells76. Leydig 
cells have a high expression of CD106 (VCAM-I) 
and bind to lymphocytes through this protein77. 
Pro-inflammatory cytokines such as TNFα, ROS, 
oxidized low-density lipoprotein, and high glucose 
concentration activate VCAM-1 expression78.

Diabetes causes increased nuclear translocation 
of the transcription factor NF-κB, resulting in 
an inflammatory response79. In the current work, 
diabetic rats showed high expression of VCAM-1 
supported by previous research80. This might be 
explained as ROS promotes NF-κB-mediated in-
flammation by increasing the amounts of proin-
flammatory cytokines, and adhesion molecules79. 
It is reported that stevioside has, anti-inflamma-
tory81, and anti-apoptosis effects82 as well as immu-
nomodulatory properties83, which might explain 
the reduction of VCAM1 after Stevia treatment. 

Under diabetes circumstances, testicular apopto-
sis, which happens at modest levels during normal 
spermatogenesis, is greatly amplified15. It is pre-
dominantly facilitated by stimulation of the mito-
chondrial-mediated apoptotic pathway62. Increased 
caspase 3 expression in our findings was supported 
by literature examining STZ-induced diabetes in 
mice and rats15,37. Moreover, oxidative stress is cri-
tical to diabetic-induced testicular cell apoptosis. 
Therefore, enhancing the antioxidant capability of 
the testis might be a potentially effective method to 
reduce testicular apoptosis, and hence infertility in 
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diabetic males, which could explain the reduction 
of caspase 3 levels in Stevia-treated rats.

The interaction between inflammation and oxi-
dative stress results in a vicious loop that culmi-
nates in the activation of the apoptotic signaling 
pathways. When activated by ROS, inflammatory 
mediators trigger apoptosis via caspase-8 activa-
tion, which drives the extrinsic apoptotic pathway57. 
Multiple investigations have shown elevated levels 
of p53, the Bax/Bcl2 ratio, and caspase-99,62, This is 
an indication that the intrinsic apoptotic signaling 
pathway is activated. Both paths resulted in caspase 
3 activation, as seen in this study. 

We have shown that diabetic rats induce RI-
PK1 expression with a reduction in the Stevia-tre-
ated rats. This is the first study to investigate the 
function of stevia in lowering RIPK1 expression 
levels in the testis. Inhibiting RIPK1 is a novel 
treatment strategy for human inflammatory and 
degenerative diseases84. DM has been recorded to 
increase expression of multiple necroptosis mar-
kers as RIPK1, 2, and 3 in β pancreatic cells, with 
the level of RIPK1 reaching more than 18 folds 
of the control rats, although they all significantly 
reduced in Stevia-treated diabetics85. Diabetes 
increases impaired cellular glucose absorption, 
whereas hyperglycemia promotes glycosylation, 
which is the primary cause of necroptosis86. Mo-
reover, after repressing RIPK1 with a necropto-
sis-inhibiting drug, the number of seminiferous 
tubules, and spermatogenesis score were incre-
ased, implying that addressing necroptosis has 
several favorable implications87. 

The development of advanced glycation end 
products (AGEs) and ROS are both regulators 
of the necrosomal pathway. The production of 
AGEs and ROS is dependent on glycolysis86, 
which is increased during necroptosis88. Intere-
stingly, LaRocca et al86 reported that elevated 
glucose suppresses extrinsic apoptosis86. This is 
in line with other reports89 that revealed glucose 
uptake hinders apoptosis, but glucose deprivation 
stimulates it. Although extrinsic apoptosis was 
inhibited by exposure to hyperglycemia, conside-
rable amounts of caspase-independent death still 
occurred. Because necroptosis and apoptosis are 
both induced by the same ligands, this could sug-
gest that hyperglycemia potentiates a shift from 
apoptosis toward necroptosis88. The existence of 
comorbid diseases, which are frequently present 
in people with diabetes, or the possible inte-
ractions between Stevia and other medications 
may not have been taken into account in this 
study. It is possible that the study did not cover 

the long-term effects of Stevia therapy or any 
possible adverse effects from prolonged use. To 
gain a more comprehensive understanding of the 
potential benefits and limitations of using Stevia 
to treat testicular injuries induced by diabetes, 
it is crucial to consider these limitations when 
interpreting the study’s results. Further research 
is needed to address these concerns.

Conclusions

Generally, this study stated the protective ef-
fect of Stevia in experimentally induced diabetic 
testicular damage, recommending its possible 
value in clinical applications to prevent testicular 
damage in diabetic patients. 
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