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Abstract. – OBJECTIVE: The aim of this 
study was to explore the protective effect of can-
desartan against cisplatin-induced kidney dam-
age, with a specific focus on the growth differ-
entiation factor 15 (GDF-15) pathway. 

MATERIALS AND METHODS: 24 adult female 
Wistar rats, with a weight range of 200-210 grams, 
were enrolled in the study. Eight rats were includ-
ed as a normal control group and did not receive 
any medication. 16 rats were administered cispla-
tin at a dosage of 2.5 mg/kg/day twice a week for 4 
weeks (total dose 20 mg/kg). Then, they were ran-
domly divided into two groups and treated with 
1 ml/kg/day tap water or 8 mg/kg/day candesar-
tan via oral gavage daily for 4 weeks. At the end of 
the treatment period, animals were sacrificed, and 
their kidneys were assessed histologically. In ad-
dition, plasma malondialdehyde (MDA), tumor ne-
crosis factor-α (TNF-α), interleukin-6 (IL-6), creati-
nine, and GDF-15 levels were assessed. 

RESULTS: Treatment with candesartan result-
ed in a significant rise in serum GDF-15 lev-
els and a significant reduction in levels of se-
rum MDA, TNF-α, IL-6, and creatinine compared 
to the cisplatin and saline group. Candesartan 
treatment effectively protected the kidney injury, 
and histopathological examinations of the kid-
neys confirmed these results.

CONCLUSIONS: This study demonstrates 
that candesartan alleviates cisplatin-induced re-
nal toxicity by further increasing GDF-15, down-
regulating inflammatory markers, and reducing 
oxidative stress.

Key Words:
Angiotensin receptor blocker, Candesartan, Cispla-

tin toxicity, GDF-15, Renal injury.

Introduction

Cisplatin is an inorganic platinum compound 
extensively used for chemotherapy of diverse sol-

id tumors. Within cancer cells, cisplatin induces 
the formation of deoxyribonucleic acid (DNA) 
crosslinks and adducts, initiating the DNA dam-
age response. This leads to subsequent cell-cycle 
arrest and ultimately results in cell death1-3. Cis-
platin administration is associated with several 
adverse effects on healthy tissues, among which 
nephrotoxicity stands out as a significant fac-
tor adversely affecting clinical outcomes1,4,5. The 
primary elimination route for cisplatin involves 
renal processes of glomerular filtration and tubu-
lar excretion. This pattern leads to a greater drug 
concentration within the kidneys compared to 
other organs. The accumulation of cisplatin with-
in the renal system initiates diverse intracellular 
stresses and activates stress response pathways, 
culminating in cisplatin-induced nephrotoxicity6.

Growth differentiation factor-15 (GDF-15), al-
so known as macrophage inhibitory cytokine 1, is 
a protein that belongs to the GDF subfamily of the 
transforming growth factor-β (TGF-β) superfam-
ily7. Members within this superfamily activate 
distinct receptors, triggering intracellular signals 
that regulate immune and various cellular reac-
tions8. Within the healthy kidney, GDF-15 is pri-
marily expressed in the proximal tubule, the thin 
descending limb of Henle’s loop, and the medul-
lary collecting duct9. Proinflammatory cytokines, 
including tumor necrosis factor-α (TNF-α), inter-
leukin-1β (IL-1β), and interleukin-6 (IL-6), have 
been identified10 as inducers of GDF-15 in mac-
rophages. GDF-15 functions as a stress response 
cytokine, with its expression heightened in re-
action to an array of disease processes, such as 
cancer, cardiovascular disease, and kidney injury. 
GDF-15 has anti-inflammatory, anti-proliferative, 
and anti-tumorigenic properties7.

Recent experimental research11-14 indicates 
that the increased endogenous expression of 
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GDF-15 after kidney injury assumes a critical 
function in the kidney protection and repair 
process. In a particular study by Liu et al11, it 
was observed that mice lacking GDF-15 exhib-
ited intensified acute tubular injury and elevat-
ed inflammatory responses after experiencing 
ischemia-reperfusion injury. Comparable results 
were derived from models of both type 1 and 
type 2 diabetes12. Another study13 reported that 
GDF-15 demonstrates an augmented presence 
in a compensatory manner during instances 
of acute and chronic kidney diseases. Nota-
bly, GDF-15 contributes to kidney protection 
through various means, such as maintaining the 
expression of the anti-aging and kidney-protec-
tive molecule Klotho. Remarkably, when recom-
binant GDF-15 was administered, it mitigated 
kidney injuries provoked by folic acid, cisplatin, 
or unilateral ureter obstruction13.

The renin-angiotensin system (RAS) functions 
as a physiological regulator of blood pressure, 
exerting its influence on cardiovascular, renal, 
and adrenal functions mainly via the actions of 
angiotensin (Ang) II14. Beyond its role in phys-
iological processes, the RAS is also implicated 
in inflammatory disorders. As a result, there has 
been a growing focus on the potential of drugs 
that modulate this system to alleviate inflamma-
tion15. Within this framework, Ang II receptor 
blockers (ARBs) have demonstrated16,17 protective 
properties against inflammation, apoptosis, and 
endoplasmic reticulum (ER) stress across vari-
ous experimental models. Candesartan, a potent 
and selective blocker of the Ang II receptor, has 
demonstrated16,18 favorable outcomes in address-
ing oxidative damage and inflammation. 

While factors contributing to kidney injury 
have been extensively studied in literature, there 
remains a limited comprehension of the regula-
tion of nephroprotective factors and the interac-
tions among them19. This study aimed to investi-
gate the protective effect of candesartan against 
cisplatin-induced kidney damage via the GDF-15 
pathway.

Materials and Methods

Study Animals
The study involved 24 adult female Wistar 

rats, with a weight range of 200-210 grams. These 
rats were kept in cages and subjected to standard 
conditions, including a 12-hour cycle of light and 
darkness at a room temperature of approximately 

22±2°C. Throughout the study, the rats had un-
restricted access to a standard pellet diet and tap 
water. The study’s procedural approach received 
approval from the Institutional Animal Care and 
Ethical Committee at Demiroğlu Bilim Univer-
sity, identified by the ethical approval number 
1723085411. All chemical substances used in 
the study were sourced from Sigma-Aldrich Inc. 
(St. Louis, MO, USA), unless explicitly indicated 
otherwise.

Experimental Procedure
A total of 24 rats were enrolled in the study. 

Among them, eight rats were included as a nor-
mal control group and did not receive any medi-
cation. The remaining 16 rats were administered 
cisplatin at a dosage of 2.5 mg/kg/day twice a 
week for 4 weeks (total dose: 20 mg/kg) to induce 
a cisplatin-induced kidney toxicity model. The 
rats that received cisplatin treatment were divid-
ed into two distinct groups. Group 1 rats (n = 8) 
were administered 1 ml/kg/day tap water via oral 
gavage daily for 4 weeks, and Group 2 rats (n = 
8) were administered 8 mg/kg/day candesartan 
(Cantab 8 mg, Nobel, Istanbul, Turkey) via oral 
gavage daily for 4 weeks. While conducting the 
study, it was observed that two rats receiving both 
cisplatin and saline unfortunately did not survive. 
However, among the rats that were administered 
both cisplatin and candesartan, there were no re-
corded instances of mortality.

At the end of the study, the rats were sacrificed 
under high-dose anesthesia by applying a cervi-
cal dislocation procedure. Blood samples were 
obtained through cardiac puncture to conduct 
biochemical analysis, and organs were subjected 
to histopathological examination.

Measurement of Plasma 
Lipid Peroxidation

Plasma samples were used to assess lipid per-
oxidation by quantifying levels of malondial-
dehyde (MDA) as thiobarbituric acid reactive 
substances (TBARS). In a concise procedure, 
trichloroacetic acid and TBARS reagent were 
introduced to the plasma samples. The mixture 
was then combined, followed by an incubation at 
100°C for 60 minutes. Following a cooling period 
on ice, the samples underwent centrifugation at 
3,000 rpm for 20 minutes. The absorbance of the 
resulting supernatant was measured at 535 nm. 
The quantification of MDA levels was expressed 
in nM units, with calibration performed using 
tetraethoxypropane.
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Measurement of Plasma TNF-α, IL-6, 
GDF-15 Levels 

Plasma levels of TNF-α, IL-6, and GDF-15 
were assessed using enzyme-linked immunosor-
bent assay (ELISA) kits (R&D Systems, Houston, 
TX, USA) that are commercially available.

Determination of Creatinine Levels 
The quantification of creatinine concentrations 

was carried out spectrophotometrically through 
Beckman-Coulter AU 640 auto-analyzer system 
(Beckman-Coulter Inc., CA, US). These creati-
nine concentrations were then presented in units 
of mg/dl.

Histopathological Examination of 
the Kidney 

For histological and immunohistochemical in-
vestigations, anesthesia was induced in all ani-
mals using intraperitoneal injections of ketamine 
100 mg/kg (Alfamine®, Alfasan International 
B.V., Woerden, Utrecht Netherlands) and xylazine 
10 mg/kg (Alfazyne®, Alfasan International B.V., 
Woerden, Utrecht Netherlands). Following that, 
the animals were perfused with 200 ml of a 4% 
formaldehyde solution in 0.1 M phosphate buffer 
saline. Kidney sections fixed in formalin (4 μm 
in thickness) were subjected to hematoxylin and 
eosin staining. All of these sections were then 
captured using an Olympus C-5050 digital cam-
era (Olympus Corp., Tokyo, Japan) mounted on 
an Olympus BX51 microscope (Olympus Corp., 
Tokyo, Japan).

Morphological assessment was conducted us-
ing a computerized image analysis system (Im-
age-Pro Express 1.4.5, Media Cybernetics Inc. 
Rockville, Maryland, USA). This analysis cov-
ered 10 microscopic fields per examined section, 
observed at a ×20 magnification. The evaluation 
was performed by an observer who was blinded 
to the study groups. Kidney sections obtained 
from each rat across all groups were subjected 

to a semi-quantitative assessment based on fac-
tors like the degree of tubular epithelial necro-
sis, luminal necrotic debris, tubular dilatation, 
and interstitial inflammation. These factors were 
graded using the following scale: 0-5% = score 
0; 6-20% = score 1; 21-40% = score 2; 41-60% = 
score 3; 61-80% = score 4; and 81-100% = score 5.

Statistical Analysis
Statistical analysis was conducted utilizing 

SPSS version 15.0 for Windows (SPSS Inc., Chi-
cago, IL, USA). Parametric variables between 
groups were compared through the Student’s 
t-test and analysis of variance, while nonparamet-
ric variables were assessed using the Mann-Whit-
ney U test. The differentiation between para-
metric and non-parametric variables was also 
verified using the Shapiro-Wilk test. The results 
were expressed as mean±standard error of the 
mean (SEM), and a significance level of p<0.05 
was considered statistically significant.

Results

Plasma MDA, TNF-α, IL-6, Creatinine, 
and GDF-15 Levels

Lipid peroxidation, assessed as plasma malond-
ialdehyde levels, was determined to assess the ef-
fect of candesartan on oxidative stress induced by 
cisplatin. Plasma MDA levels were significantly 
increased in cisplatin and saline-administered rats 
as compared to control (p<0.001). Plasma MDA 
levels were significantly decreased in cisplatin and 
candesartan-administered rats as compared to the 
cisplatin and saline group (p<0.001) (Table I). 

Changes in the expression of cytokines were 
determined to evaluate cisplatin-induced inflam-
mation and the protective effect of candesartan. 
The proinflammatory cytokines TNF-α and IL-
6 were elevated following cisplatin and saline 
administration compared to the control group 

Table I. Effect of candesartan on biochemical analysis results related to cisplatin-induced kidney.

 Normal control Cisplatin + saline Cisplatin + 8 mg/kg candesartan

Plasma MDA (nM) level 54.2 ± 1.5 142.6 ± 3.8** 81.5 ± 2.6##

Plasma TNF-α (pg/ml) level 17.4 ± 0.7 71.3 ± 1.4** 30.7 ± 1.8#

Plasma IL-6 (pg/ml) level 12.1 ± 1.9 578.8 ± 10.7** 205.2 ± 9.3##

Plasma creatinine (mg/dl) level 0.48 ± 0.05 0.73 ± 0.03** 0.56 ± 0.1#

Plasma GDF-15 (ng/ml) protein level 0.13 ± 0.04 0.18 ± 0.05* 0.29 ± 0.1#

Results were presented as mean ± standard error of the mean (SEM). Statistical analyses were performed by one-way ANOVA 
test. *p < 0.05, **p < 0.001 (different from control group), #p < 0.01, ##p < 0.001 (different from cisplatin and saline group). 
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(p<0.001). Treatment with candesartan amelio-
rated the levels of TNF-α (p<0.01) and IL-6 
(p<0.001) in cisplatin-administered rats (Table I). 

Serum creatinine levels were significantly el-
evated in cisplatin and saline-administered rats 
as compared to control (p<0.001). Candesar-
tan-treated rats showed a significant reduction in 
levels of serum creatinine in comparison to the 
cisplatin-saline group (p<0.01, Table I). 

Serum GDF-15 levels were significantly elevat-
ed in cisplatin and saline-treated rats as compared 
to control (p<0.05). Treatment with candesartan 
resulted in a significant rise in serum GDF-15 
levels when compared to the cisplatin and saline 
group (p<0.01, Table I).

Histopathological Examination of 
Kidney Tissue Samples

The histopathological examination of the kid-
neys of control and cisplatin and saline-treated 
rats revealed that the kidneys from the cisplatin 
and saline group show tubular epithelial necro-
sis (p<0.001), tubular dilatation (p<0.001), lu-
minal necrotic debris (p<0.001), and interstitial 
inflammation (p<0.01). Candesartan provided 
significant protection and prevented kidney inju-
ry induced by cisplatin. In the cisplatin and can-
desartan group, there was a decrease in tubular 
epithelial necrosis (p<0.001), tubular dilatation 
(p<0.001), luminal necrotic debris (p<0.001), and 
interstitial inflammation (p<0.05) in the kidneys 
compared to the cisplatin and saline group (Table 
II). The histopathological features of the kidneys 
are shown in Figure 1.

Discussion

Cisplatin is one of the most effective chemo-
therapeutics and is effective against a wide range 
of cancer types. Nonetheless, its use is constrained 
due to nephrotoxicity20. Cisplatin-induced neph-
rotoxicity has been linked21 to oxidative stress 

and detrimental inflammatory reactions. Ang II 
receptor blockers demonstrated22,23 favorable out-
comes in mitigating both inflammation and stress 
associated with cisplatin-induced nephrotoxicity. 
GDF-15 stands as a prospective factor with reno-
protective potential, primarily eliciting its expres-
sion at the proximal tubular location after kidney 
injury9. In this study, we examined the potential 
protective effect of candesartan against kidney 
injury induced by cisplatin in rats, with a specific 
emphasis on the role of GDF-15.

Our study demonstrated that candesartan, an 
angiotensin receptor blocker, provided substan-
tial protection and effectively mitigated cispla-
tin-induced kidney injury. This was substantiat-
ed through the examination of a nephrotoxicity 
marker (serum creatinine) and further confirmed 
by histopathological assessment of kidney tissue. 
The observed renal injury induced by cisplatin 
is closely linked to processes involving inflam-
mation, oxidative stress, and apoptosis24-26. In the 
context of inflammation, it was documented27,28 
that TNF-α and IL-6 function as proinflamma-
tory cytokines that act as important mediators of 
cisplatin-induced inflammatory tissue damage. 
They can induce direct renal damage and ini-
tiate the process of apoptosis and necrotic cell 
death28,29. Our experiment showed a significant 
elevation of plasma TNF-α and IL-6 levels in 
the cisplatin and saline group compared to the 
normal group. A significant decrease in plasma 
levels of TNF-α and IL-6 was observed in the cis-
platin and candesartan group in comparison with 
cisplatin and saline-treated rats. These findings 
are in accordance with the literature22,23. 

Considering that oxidative stress has been es-
tablished30,31 as a contributing factor in cispla-
tin-induced nephrotoxicity, we investigated the 
regulatory effect of candesartan on cisplatin-in-
duced oxidative stress by assessing lipid peroxide 
levels within the kidney. Concerning lipid per-
oxidation in the kidney, our study showed that 
cisplatin and saline-administered rats had signifi-

Table II. Comparison of groups according to kidney histopathological scoring system.

 Normal control Cisplatin + saline Cisplatin + 8 mg/kg candesartan

Tubular epithelial necrosis 0.2 ± 0.1 3.1 ± 0.2** 1.2 ± 0.1##

Luminal necrotic debris 0.2 ± 0.1 2.9 ± 0.4** 1.1 ± 0.2##

Tubular dilatation 0.1 ± 0.2 2.6 ± 0.3** 1.9 ± 0.3##

Interstitial inflammation 0.2 ± 0.1 1.5 ± 0.1* 0.8 ± 0.1#

Results were presented as mean ± standard error of the mean (SEM). Statistical analyses were performed by one-way ANOVA 
test. *p < 0.01, **p < 0.001 (different from control group), #p < 0.05, ##p < 0.001 (different from cisplatin and saline group). 
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cantly increased plasma MDA levels compared 
to the normal group. The increased lipid perox-
idation might be elucidated by the generation 
of reactive oxygen species induced by cisplatin, 
which subsequently leads to a reduction in cel-
lular antioxidant levels32. These findings provide 
additional substantiation for the involvement of 
oxidative stress in cisplatin-induced nephrotox-
icity. Notably, administration of candesartan to 
rats was observed to significantly mitigate lipid 
peroxidation induced by cisplatin. Hence, apart 

from its action in blocking Ang II receptors, 
the additional mechanism of nephroprotection 
attributed to candesartan could be attributed to 
its previously validated antioxidant characteris-
tics33. As a result, candesartan has the potential to 
restore cellular defense mechanisms and hinder 
lipid peroxidation.

Growth differentiation factor 15 is gaining 
heightened recognition as a potential target for 
therapeutic intervention in kidney injury. GDF-15 
functions as a stress-induced cytokine, with its 

Figure 1. Kidney histopathology. A-B, Normal kidney (control group), glomeruli (G) and tubules (t), C-D, Cisplatin and 
saline group kidney have tubular cell necrosis (arrow) and tubular dilatation (td), E-F, Cisplatin and candesartan group kidney 
decreased on tubular dilatation (t) and tubular cell necrosis. H&E (A, C, E ×20 and B, D, F ×40 magnification).
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expression being amplified as a response to kid-
ney injury9. Experimental models11,34,35 of kidney 
injury in animals have demonstrated that deficient 
GDF-15 levels escalate inflammatory reactions and 
exacerbate kidney injury, whereas GDF-15 overex-
pression protects the kidney and exerts immuno-
modulatory influences. In our study, serum GDF-
15 levels were significantly elevated in cisplatin 
and saline-treated rats as compared to control. 
Treatment with candesartan resulted in a signifi-
cant rise in serum GDF-15 levels when compared 
to the cisplatin and saline group. 

The renin-angiotensin system is proinflamma-
tory and involved in inflammatory disorders15. 
During kidney injury, activated RAS may limit 
the increase of GDF-15. Candesartan, by blocking 
RAS, may enable further increase of GDF-15. 
Additionally, treatment with candesartan may in-
crease renal messenger ribonucleic acid (mRNA) 
expression and plasma protein levels of GDF-15. 
Finally, candesartan could initiate a cascade of 
defensive reactions, encompassing the stimulated 
proliferation of tubular epithelial cells, inhibition 
of extracellular matrix protein accumulation, and 
hindrance of the recruitment of inflammatory 
cells via GDF-15 increase36 and prevent cispla-
tin-induced kidney injury.

Elevated plasma GDF-15 levels preceding the 
onset of kidney injury may be a sign of previous 
subclinical kidney injury that eludes detection 
through routine clinical measures. GDF-15 secre-
tion occurs at the early stage of renal endothelial 
dysfunction and anticipates the emergence of 
microalbuminuria37,38. Therefore, treatment with 
candesartan, by further increasing GDF-15, may 
be important in preserving the kidney from cis-
platin-induced renal failure before it develops. 

Valiño-Rivas et al13 demonstrated that despite 
a compensatory rise in GDF-15 expression during 
kidney injury, complete prevention of kidney in-
jury was not achieved; nevertheless, the absence 
of GDF-15 exacerbated kidney injury. Neverthe-
less, further increments in GDF-15 (i.v. admin-
istration of recombinant GDF-15) protected the 
kidney from nephrotoxicity. 

In our study, we did not administer exogenous 
GDF-15 to the rats. However, through candesar-
tan treatment, we managed to protect the kid-
neys from nephrotoxicity by further increasing 
GDF-15. In this context, we demonstrated the 
feasibility of kidney injury prevention through 
the administration of candesartan, a therapeutic 
strategy that holds potential for evaluation in 
clinical trials.

Conclusions

The results of this study offer novel insights 
into the protective effect of candesartan against 
cisplatin-induced kidney injury, along with po-
tential insights into the underlying mecha-
nisms. GDF-15 is a nephroprotective factor, 
and its nephroprotective action is associated 
with the downregulation of inflammation. The 
inherent upregulation of endogenous GDF-15 
expression in the kidney cannot alone entire-
ly prevent kidney injury; however, additional 
increments in GDF-15 levels offer protective 
effects for the kidneys. Candesartan is capable 
of improving kidney injury in cisplatin neph-
rotoxic rats by further increasing GDF-15. As a 
result, candesartan has the potential to protect 
against kidney injury induced by cisplatin, 
thus enhancing the feasibility of utilizing cis-
platin as an efficacious antineoplastic agent 
while minimizing concerns of renal harm. This 
knowledge can be used to design clinical trials.
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