Eur Rev Med Pharmacol Sci 2020; 24 (14): 7732-7744
DOI: 10.26355/eurrev_202007_22299

A novel homozygous TPM1 mutation in familial pediatric hypertrophic cardiomyopathy and in silico screening of potential targeting drugs

S.J. Carlus, I.S. Almuzaini, M. Karthikeyan, L. Loganathan, G.S. Al-Harbi, F.H. Carlus, A.H. Al-Mazroea, M.M. Morsy, H.M. Abo-Haded, A.M. Abdallah, K.M. Al-Harbi

Cardiogenetics Unit, Pediatrics Department, College of Medicine, Taibah University, Al-Madinah, Kingdom of Saudi Arabia. justincarlus@gmail.com


OBJECTIVE: Familial hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. While sarcomeric gene mutations explain many HCM cases, the genetic basis of about half of HCM cases remains elusive. Here we aimed to identify the gene causing HCM in a non-consanguineous Saudi Arabian family with affected family members and a history of sudden death. The impact of the identified mutation on protein structure and potential drug targets were evaluated in silico.

MATERIALS AND METHODS: Triplets (two HCM subjects and one patent ductus arteriosus (PDA) case) and unaffected parents were screened by targeted next-generation sequencing (NGS) for 181 candidate cardiomyopathy genes. In silico structural and functional analyses, including protein modeling, structure prediction, drug screening, drug binding, and dynamic simulations were performed to explore the potential pathogenicity of the variant and to identify candidate drugs.

RESULTS: A homozygous missense mutation in exon 1 of TMP1 (assembly GRCh37-chr15: 63340781; G>A) was identified in the triplets [two HCM and one patent ductus arteriosus (PDA)] that substituted glycine for arginine at codon 3 (p.Gly3Arg). The parents were heterozygous for the variant. The mutation was predicted to cause a significant and deleterious change in the TPM1 protein structure that slightly affected drug binding, stability, and conformation. In addition, we identified several putative TPM1-targeting drugs through structure-based in silico screening.

CONCLUSIONS: TPM1 mutations are a common cause of HCM and other congenital heart defects. To date, TPM1 has not been associated with isolated PDA; to our knowledge, this is the first report of the homozygous missense variation p.Gly3Arg in TPM1 associated with familial autosomal recessive pediatric HCM and PDA. The identified candidate TPM1 inhibitors warrant further prospective investigation.

Free PDF Download

To cite this article

S.J. Carlus, I.S. Almuzaini, M. Karthikeyan, L. Loganathan, G.S. Al-Harbi, F.H. Carlus, A.H. Al-Mazroea, M.M. Morsy, H.M. Abo-Haded, A.M. Abdallah, K.M. Al-Harbi
A novel homozygous TPM1 mutation in familial pediatric hypertrophic cardiomyopathy and in silico screening of potential targeting drugs

Eur Rev Med Pharmacol Sci
Year: 2020
Vol. 24 - N. 14
Pages: 7732-7744
DOI: 10.26355/eurrev_202007_22299