MiR-201-5p alleviates lipopolysaccharide-induced renal cell dysfunction by targeting NOTCH3
Y.-S. Yuan, M. Fei, Y.-X. Yang, W.-W. Cai Department of Emergency Intensive Care Unit, Zhejiang Province People’s Hospital, Hangzhou, Zhejiang, China. cai_ww09@sina.com
OBJECTIVE: Lipopolysaccharide (LPS)-induced inflammation and dysfunction in the kidney may be the major risk factors for subsequent acute kidney injury (AKI). Previous studies have reported that up-regulation of notch receptor 3 (NOTCH3) expression is accompanied with renal epithelium and podocyte damage. Herein, we aimed to investigate whether NOTCH3 was involved in lipopolysaccharide (LPS)-induced AKI and renal cell dysfunction.
MATERIALS AND METHODS: Septic mice were established using LPS (20 mg/kg) intraperitoneally. mRNA and protein expression in the kidney and renal cell was performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Cell counting kit-8 (CCK8) and flow cytometry were used to measure cell viability and apoptosis, respectively. Bioinformatics algorithm and Luciferase reporter gene assay were performed to validate whether NOTCH3 was a direct target of miR-201-5p.
RESULTS: Up-regulation of NOTCH3 and down-regulation of miR-201-5p were observed in the kidney of LPS-induced septic mice. LPS-stimulated TCMK-1 and MPC5 cells led to an increase in NOTCH3 and a decrease in miR-201-5p expression levels. Bioinformatics algorithm and experimental measurements validated that NOTCH3 was a direct target of miR-201-5p. Overexpression of miR-201-5p protected against LPS-induced renal cell growth inhibition, apoptosis and inflammatory response via the suppression of toll-like receptor 4 (TLR4)/NOTCH3 signaling pathway.
CONCLUSIONS: The novel role of miR-201-5p via the inhibition of LPS-activated TLR4/NOTCH3 might provide a potential therapeutic strategy for the treatment of LPS-induced AKI.
Free PDF DownloadThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
To cite this article
Y.-S. Yuan, M. Fei, Y.-X. Yang, W.-W. Cai
MiR-201-5p alleviates lipopolysaccharide-induced renal cell dysfunction by targeting NOTCH3
Eur Rev Med Pharmacol Sci
Year: 2020
Vol. 24 - N. 10
Pages: 5592-5603
DOI: 10.26355/eurrev_202005_21345