An overview on immune system and migraine

P.P. BRUNO, F. CARPINO, G. CARPINO*, A. ZICARI

Department of Experimental Medicine and Pathology and *Department of Human Anatomy, University “La Sapienza” – Rome (Italy)

Abstract. – The pathogenesis of migraine is still unclear, but much evidence led us hypothesize that it can be associated with immune system modification, so that a role for cytokines has been suggested. Cytokines are important mediators of the immune and inflammatory pathways and their receptors are widely expressed in Central Nervous System (CNS) by all cell types, including neurons, indicating that they can act on neuronal receptors. Cytokines are now considered to be the pain mediators in neurovascular inflammation. Furthermore cytokines may be a cause of the migraine pain: in fact an high levels of chemokines could stimulate the activation of trigeminal nerves, the release of vasoactive peptides or other biochemical mediators, such as Nitric Oxide, and then to cause inflammation.

In this scenario, many studies on humans have focused the attention on peripheral and central levels of cytokines, but data obtained are highly controversial.

Since at the moment there is not a conclusive evidence of the role played by cytokines in migraine, the Authors present and comment the latest reports regarding cytokine modification and the role of the immune system in migraine.

Key Words: Migraine, Th1/Th2 cytokines, Nitric oxide.

Abbreviations

MWoA: Migraine Without Aura
MWA: Migraine With Aura
NO: Nitric Oxide
iNOS: inducible Nitric Oxide Synthase
RANTES: Regulated on activated normal T-cell expressed, and secreted

Introduction

Migraine is the most common neurological disorder in Western population: it affects 6% of the male and 20% of the female population, so that it is considered as social pathology¹.

Serious unilateral headache, vomiting, nausea and photophobia usually characterize migraine attacks. About 30% patients have an aura period, characterized by visual, sensory and speech disturbances, before the headache starts.

Even if the mechanisms leading to the typical headache in migraine are still unknown, the etiology of migraine is surely multifactorial.

Various factors such as alcohol, smoking, nutrition, stress environmental changes, exercises and menstrual cycle, in women, have been all associated with migraine.

It is now admitted that the changes in the immune homeostasis could, in some ways, contribute to migraine.

Cytokines are now considered to be the pain mediators in neurovascular inflammation. Furthermore cytokines may be a cause of the migraine pain: in fact high levels of chemokines could stimulate the activation of trigeminal nerves, the release of vasoactive peptides or other biochemical mediators, such as Nitric Oxide, and then to cause inflammation.

In this scenario, many studies on humans have focused the attention on peripheral and central levels of cytokines, but data obtained are highly controversial.

Since at the moment there is not a conclusive evidence of the role played by cytokines in migraine, the Authors present and comment the latest reports regarding cytokine modification and the role of the immune system in migraine.

Key Words: Migraine, Th1/Th2 cytokines, Nitric oxide.

Abbreviations

MWoA: Migraine Without Aura
MWA: Migraine With Aura
NO: Nitric Oxide
iNOS: inducible Nitric Oxide Synthase
RANTES: Regulated on activated normal T-cell expressed, and secreted

Introduction

Migraine is the most common neurological disorder in Western population: it affects 6% of the male and 20% of the female population, so that it is considered as social pathology¹.

Serious unilateral headache, vomiting, nausea and photophobia usually characterize migraine attacks. About 30% patients have an aura period, characterized by visual, sensory and speech disturbances, before the headache starts.

Even if the mechanisms leading to the typical headache in migraine are still unknown, the etiology of migraine is surely multifactorial.

Various factors such as alcohol, smoking, nutrition, stress environmental changes, exercises and menstrual cycle, in women, have been all associated with migraine.

It is now admitted that the changes in the immune homeostasis could, in some ways, contribute to migraine.

Cytokines are now considered to be the pain mediators in neurovascular inflammation. Furthermore cytokines may be a cause of the migraine pain: in fact high levels of chemokines could stimulate the activation of trigeminal nerves, the release of vasoactive peptides or other biochemical mediators, such as Nitric Oxide, and then to cause inflammation.

In this scenario, many studies on humans have focused the attention on peripheral and central levels of cytokines, but data obtained are highly controversial.

Since at the moment there is not a conclusive evidence of the role played by cytokines in migraine, the Authors present and comment the latest reports regarding cytokine modification and the role of the immune system in migraine.

Key Words: Migraine, Th1/Th2 cytokines, Nitric oxide.

Abbreviations

MWoA: Migraine Without Aura
MWA: Migraine With Aura
NO: Nitric Oxide
iNOS: inducible Nitric Oxide Synthase
RANTES: Regulated on activated normal T-cell expressed, and secreted

Introduction

Migraine is the most common neurological disorder in Western population: it affects 6% of the male and 20% of the female population, so that it is considered as social pathology¹.

Serious unilateral headache, vomiting, nausea and photophobia usually characterize migraine attacks. About 30% patients have an aura period, characterized by visual, sensory and speech disturbances, before the headache starts.

Even if the mechanisms leading to the typical headache in migraine are still unknown, the etiology of migraine is surely multifactorial.

Various factors such as alcohol, smoking, nutrition, stress environmental changes, exercises and menstrual cycle, in women, have been all associated with migraine.

It is now admitted that the changes in the immune homeostasis could, in some ways, contribute to migraine.

Cytokines are now considered to be the pain mediators in neurovascular inflammation. Furthermore cytokines may be a cause of the migraine pain: in fact high levels of chemokines could stimulate the activation of trigeminal nerves, the release of vasoactive peptides or other biochemical mediators, such as Nitric Oxide, and then to cause inflammation.

In this scenario, many studies on humans have focused the attention on peripheral and central levels of cytokines, but data obtained are highly controversial.

Since at the moment there is not a conclusive evidence of the role played by cytokines in migraine, the Authors present and comment the latest reports regarding cytokine modification and the role of the immune system in migraine.

Key Words: Migraine, Th1/Th2 cytokines, Nitric oxide.
for IL-10, being higher during attacks in comparison to controls and for TNF-α and IL-2 that were lower outside attacks than controls (Table I).

However, even if the cause of elevated cytokine levels during attacks is unknown, these data suggest that at least TNF-α, IL-1β and IL-10 may be involved in the pathogenesis of migraine attacks.

On the other hand, Fidan et al in 2006 in a study carried out in migraine patients during attacks and in attack-free periods did not find a significant difference in the serum levels of IL-1β, IL-2, IFN-γ and TNF-α compared to those in healthy groups. Whereas transitory increased levels of TNF-α and IL-6 were observed in the internal jugular blood of MWA patients. Both cytokines reached a peak at 1 hour from catheter insertion, and then tended to progressively decrease toward levels at baseline.

A higher level of these cytokines could stimulate the activation of trigeminal nerves and the release of vasoactive peptides and then to cause inflammation and therefore contribute to cause inflammation.

A slight increase in IL-1β was evident from 1 to 4 hours after catheter insertion and then decreased. Conversely, levels of IL-4 were reduced at the same times and its levels at the end of the attack returned to those detected at attack onset (Table II).

An other clinical trial carried out by Ishizaki et al in 2005 has focused the attention on an other particular cytokine: the Transforming Growth Factor Beta 1 (TGF-β1). This is a multifunctional proinflammatory cytokine involved in the modulation of cell growth, differentiation, and repairs following injury and immune-modulation.

The TGF-β1 serum levels in migraine were significantly higher than in controls but there were no any differences in the plasma levels between MWA and in MWoA and there was not correlation with age or duration of illness, or frequency of migraine headache.

The most predominant systemic effects of TGF-β1 have been regarded as immunosuppressive properties and increases or decreases in the production of TGF-β1 have been reported in association with various diseases, including atherosclerosis, fibrotic disease, inflammatory bowel diseases and cancer.

TGF-β1 has been regarded as a platelet-derived cytokine and it has been demonstrated that human platelets contain pools of latent TGF-β1 and since many reports suggested that platelets play some role in migraine, we can hypothesize an effective involvement of TGF-β1 in headache pathogenesis.

Furthermore, a possible involvement of TGF-β1 has been notified in central fatigue or chronic fatigue syndrome and it has been proposed that excess exercise increases active TGF-β1 in brain, followed by the feeling of fatigue and decreasing motor activity. Patients with migraine often complain of fatigue or lack of vigor during and between migraine episodes. These symptoms may relate to increased TGF-β1.

The study regarding chemokine could open a new window to understand migraine pathogenesis: in fact while MCP-1 and MIP-1α did not show any differences between migraine patients and controls, the serum level of RANTES effectively was significantly higher in the patients during attacks than other group.

It appears clear that some immunological changes take place during migraine and cytokines are considered to be the possible pain mediators in neuro-vascular inflammation and so they may cause the generation of migraine pain: they can also induce sterile inflammation of meningeal blood vessels in migraine but at nowadays the immunological disorders in migraine have not been well defined yet. The more accredited hypothesis indicates that some change in TH2 type cytokines can play a role in the etiology of migraine. In fact while TH1 lymphocytes release IL-2, IFN-γ and

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Controls</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>0.72 ± 0.22</td>
<td>0.70 ± 0.11</td>
</tr>
<tr>
<td>IL-2</td>
<td>0.25 ± 0.36</td>
<td>0.06 ± 0.16**</td>
</tr>
<tr>
<td>IL-4</td>
<td>2.13 ± 0.19</td>
<td>2.09 ± 0.31</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.66 ± 0.37</td>
<td>0.81 ± 0.32</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.50 ± 0.22</td>
<td>0.68 ± 0.13++</td>
</tr>
<tr>
<td>TNF-α</td>
<td>1.71 ± 0.70</td>
<td>1.13 ± 0.91*</td>
</tr>
</tbody>
</table>

*p < .05 Outside attacks versus control; **p < .004 During attacks versus control.
lymphotoxin, Th2 release IL-4, IL5 and IL-10 and an unbalance between TH1/TH2 cytokines may influence the spreading of pain producing processes in migraine (Tables III and IV).

In a study carried out by Martelletti et al in 1998 it has been demonstrated that TH1 subset is lowered in MWoA patients in respect to controls whereas IL-4 serum levels were higher.

Nitric Oxide (Figure 1), a small gaseous molecule extremely versatile, seems to be involved not only in the modulation of TH1/TH2 subset but also in the activation of cycloxygenase type 2 enzyme that is responsible for the synthesis of prostaglandins. In MWA peripheral monocytes spontaneously release “in vitro” detectable amounts of NO and serum level of nitric oxide are much higher in patients than in controls; in patients monocytes the release of PGE2 is higher than in healthy subjects.

Finally most of the pro-inflammatory cytokines, such as IFN-γ, IL-1β and TNF-α are potent inducers of NO release by monocytes.

Recently, it has been reported that the increased production of NO by monocytes of MWoA patients can be due to an up-regulation in iNOS expression secondary to the transient increase in NF-Kb activity. This observation is extremely important: in fact the activation of NF-Kb is linked to the induction of genes encoding for pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and cyclooxygenase expression.

At the light of these observations it is highly possible that TH1/TH2 cytokines may influence the spreading of pain-producing processes in migraine. On the other hand it is very often impossible to detect a real change in the levels of many cytokines, maybe because most of them have a very short life in serum and are quickly degraded and the serum clearance of cytokines is very rapid, sometimes in the order of minutes.

Some Authors suggest that the urine collections could be used for the detection of cytokine concentrations: in fact while cytokine fluctuation are often transient and undetectable in serum, urine samples reflect a mean value within 24h could be more affordable.

Table III. The most relevant cytokines related to migraine.

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Main source</th>
<th>Target cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1 (α-β)</td>
<td>Monocytes/macrophages</td>
<td>TH-Lymphocytes</td>
</tr>
<tr>
<td>B-Lymphocytes</td>
<td></td>
<td>B-Lymphocytes</td>
</tr>
<tr>
<td>Dendritic cells</td>
<td></td>
<td>NK-Macrophages</td>
</tr>
<tr>
<td>Endothelial cells</td>
<td></td>
<td>Neutrophils</td>
</tr>
<tr>
<td>Endothelial cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-2</td>
<td>TH1-Lymphocytes</td>
<td>T-Lymphocytes</td>
</tr>
<tr>
<td>IL-4</td>
<td>TH2-Lymphocytes</td>
<td>B-Lymphocytes</td>
</tr>
<tr>
<td>Mast cells</td>
<td></td>
<td>NK</td>
</tr>
<tr>
<td>IL-6</td>
<td>Monocytes/macrophages</td>
<td>Plasma cells</td>
</tr>
<tr>
<td>TH2-Lymphocytes</td>
<td></td>
<td>B-Lymphocytes</td>
</tr>
<tr>
<td>Bone Marrow stoma cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td>TH2-Lymphocytes</td>
<td>Macrophages</td>
</tr>
<tr>
<td>TNF-α (Tumour Necrosis Factor-α)</td>
<td>Macrophages</td>
<td>Tumour cells</td>
</tr>
<tr>
<td>(Transforming Growth Factor-β)</td>
<td>Mast cells</td>
<td>Granulocytes</td>
</tr>
<tr>
<td>Platelets</td>
<td></td>
<td>Monocytes/Macrophages</td>
</tr>
<tr>
<td>Macrophages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast cells</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05 Outside attacks versus control; **p < .004 During attacks versus control.

Table IV. Identification and main properties of TH1/TH2 cytokines.

<table>
<thead>
<tr>
<th></th>
<th>TH 1</th>
<th>TH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrophage activation</td>
<td>+++</td>
<td>--</td>
</tr>
<tr>
<td>Selectin ligands</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>Receptors for IFN-γ</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Receptors for IL-12</td>
<td>++</td>
<td>--</td>
</tr>
</tbody>
</table>
We however conclude that about migraine and cytokines we are on long way on the basis of the latest researches, the immune system is securely involved.

References

