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Abstract. - OBJECTIVE: RNA-seq data and
miRNA-seq data of lung adenocarcinoma (LU-
AD) were analyzed to identify critical long
non-coding RNAs (IncRNAs) and disclose mo-
lecular pathogenesis.

MATERIALS AND METHODS: RNA-seq da-
ta and miRNA-seq data were downloaded from
TCGA. Differentially expressed IncRNAs (DELSs)
and microRNAs (DEMs) were revealed by two
sample t-test. IFold changel > 2 and p-value <
0.01 were set as the cutoffs. Univariate Cox re-
gression was performed to disclose prognostic
IncRNAs. Information about miRNA-IncRNA in-
teractions and miRNA-mRNA interactions were
acquired from miRcode and miRTarBase, re-
spectively. A miRNA-IncRNA-mRNA regulatory
network was then constructed, from which reg-
ulatory modules were identified. Functional en-
richment analysis was performed with DAVID.

RESULTS: A total of 57 DELs and 118 DEMs
were identified from 507 LUAD compared with 19
normal samples. Three DELSs, including MEG3,
MIAT and MIR4697HG, were associated with
clinical features, while nine DELs (LINC00115,
LINC00265, LINC01001, LINC01002, MIR22HG,
NFYC-AS1, SNHG10, THUMPD3-AS1 and TM-
PO-AS1) were revealed to be prognostic bio-
markers. A regulatory network including 61 miR-
NA-IncRNA interactions and 304 miRNA-mRNA
interactions was constructed, from which 19 In-
cRNA-miRNA-mRNA regulatory modules were
identified. Among the modules, MEG3 and MIAT
may play important roles in the development of
LUAD by interactions with miR-106 which then
regulated the MAPK9 to involve in MAPK sig-
naling pathways. LINC00115 might interact with
miR-7 to regulate FGF2 to participate in path-
ways in cancer.

CONCLUSIONS: MEG3, MIAT, LINC00115 may
be underlying therapeutic targets for LUAD func-
tioning as ceRNAs for regulation of miRNA-mRNA.
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Introduction

Lung adenocarcinoma (LUAD) is the most
common histological subtype of non-small cell
lung cancer, responsible for more than 600,000
deaths annually worldwide'. Since LUAD tends
to form metastasis widely at an early stage, the
prognosis for patients with LUAD is commonly
poor, with the average five-year survival rate less
than 20%?. Thus, an investigation into the etiolo-
gy and metastasis mechanism of LUAD remains
a hot spot to develop novel effective therapeutic
measures.

Recently high-throughput transcriptome analy-
sis has revealed that more than 90% of the tran-
scriptome is transcribed into non-coding RNAs,
among which microRNAs (miRNAs) and long
non-coding RNAs (IncRNAs) have been iden-
tified to be involved in malignant behaviors of
LUAD?’. For example, Qu et al* illustrated that the
expression of miR-33b is dramatically decreased
in LUAD cell lines and tissues. Restoration of
miR-33b expression inhibits LUAD cell prolifera-
tion, migration, and invasion by specific suppres-
sing the expression of its target gene ZEBI via
binding in the ZEB1 3’-UTR region followed by
limiting tumor cell epithelial-mesenchymal tran-
sition. Wu et al> demonstrated that HNF1A-AS1
is significantly highly expressed in LUAD com-
pared with corresponding non-tumor tissues, and
its expression level is significantly associated
with TNM stage, tumor size, and lymph node me-
tastasis, leading to worse overall survival. Further
in vitro and in vivo analyses demonstrated HN-
F1A-AS1 may promote tumor proliferation and
metastasis by regulating cyclin D1, E-cadherin,
N-cadherin and B-catenin expression.

Furthermore, several authors believed that the-
re is an interplay between IncRNAs and miRNAs
during the tumorigenic process, among which the
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competing endogenous RNA (ceRNA) hypothe-
sis attracts more attention®. ceRNA hypothesis
proposes that IncRNAs may serve as molecular
sponges for miRNAs and hence functionally li-
berate mRNA targeted regulated by aforementio-
ned active miRNASs’®, This hypothesis has been
proved in a serial of literatures focusing on lung
cancer. For example, Nie et al’ found that high
expression of IncRNA UCALI in lung cancer up-re-
gulates the expression of miR-193a-3p target gene
ERBB4 through competitively ‘spongeing’ miR-
193a-3p, ultimately promoting cell proliferation,
while overexpression of miR-193a-3p attenuates
the promoting proliferation effect of UCAL. Thus,
the disclosure of the IncRNA-miRNA-mRNA
interaction network may be conducive to com-
prehensively understand the etiology and meta-
stasis mechanism of cancer to provide potential
therapeutic targets, which have been performed
for several cancers'®!!, but not in LUAD.

The goal of this study is to construct the microR-
NA-IncRNA-mRNA regulatory network and scre-
en modules associated with LUAD by collecting
RNA-seq data and miRNA-seq data from a public
database. Critical IncRNA were further disclosed by
correlation with the clinical characteristics.

Materials and Methods

Raw Data

RNA-seq data and miRNA-seq data of LUAD
were downloaded from The Cancer Genome At-
las (TCGA, https:/tcga-data. nci. nih. gov/tcga/)
data portal on November 18, 2015. The RNA
expression data (level 3) were generated from Hi-
Seq 2000 sequencing platform (Illumina Inc, San
Diego, CA, USA) by RNASeqV2 post-processing
pipelines and demonstrated as RSEM (RNA-
Seq by Expectation-Maximization) normalized
count data. The miRNA expression data (level
3) were collected by GA as well as HiSeq 2000
sequencing platform (Illumina Inc, San Diego,
CA, USA) and demonstrated as reads per million
miRNA (RPM) mapped data.

Clinical information of the cases was al-
so collected, including gender, anatomic organ
subdivision, location lung parenchyma, tumor
status, AJCC tumor pathologic pT, AJCC nodes
pathologic pN, AJCC metastasis pathologic pM,
AJCC pathologic tumor stage, EGFR mutation
status, EML4-ALK translocation status, tobacco
smoking history indicator, new tumor event dx
indicator and vital status.

Pre-treatment of raw data

Low-abundance RNA and miRNA were remo-
ved. RNA with expression value >1 in 70% sam-
ples were retained and miRNA with expression
value >10 in 80% samples were retained.

Human gene information was downloaded
from The HUGO Gene Nomenclature Committee
(HGNC, http:/www.genenames.org/). Then tran-
scripts were divided into two groups using a perl
transcript: protein-coding gene and non-coding
RNA. Genes without annotations from HGNC were
delivered to Ref Gene to retrieve annotations.

Screening of Differentially Expressed
IncRNAs and miRNAs

Differentially expressed IncRNAs (DELs) and
miRNAs (DEMs) between LUAD and normal
samples, or associated with clinical features were
screened by two sample #-test. [Fold change| > 2
and p-value < 0.01 were set as the cutoffs.

Survival Analysis

Univariate Cox regression was performed to
analyze the correlation between IncRNA and sur-
vival time. p-value < 0.05 was set as the cut-off.

Prediction of Target IncRNAs of miRNAs
Information about miRNA-target gene was
downloaded from miRcode (http://www.mirco-
de.org/)"? and miRNA-IncRNA interactions were
selected out. The DELs and DEMs were mapped
into the interactions. Thus, LUAD-specific miR-
NA-IncRNA interactions were revealed. In addi-
tion, potential regulationship between miRNAs
and IncRNAs were also predicted by starBase
v2.0 (http://starbase.sysu.edu.cn/index.php)’3.

Prediction of Target mRNAs of mRNAs

Target mRNAs were predicted for DEMs using
miRTarBase (http:/mirtarbase.mbc.nctu.edu.tw/)*.
Confident miRNA-mRNA interactions that were
validated by at least two experimental methods (as-
say, western blot, qPCR, microarray, pSILAC and
NGS) were selected out and then DEMs were map-
ped into the interactions.

Construction of the Regulatory Network
The miRNA-IncRNA-mRNA regulatory net-
work was constructed with above interactions. Ma-
ximal information coefficient (MIC) method"® was
adopted to filter the network in which MIC > 0.17 as
well as MIC-p2 > 0.17 were set as the cut-offs. The
network was visualized with Cytoscape software
(http://cytoscape.github.io/).
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Table I. Correlation between differentially expressed IncRNAs and clinical features.

Comparisons

Gender (male vs. female)

Anatomic organ subdivision (R vs. L)

Location lung parenchyma (Central vs. Peripheral)
Tumor status (tumor free vs. with tumor)

AJCC tumor pathologic pT (T3+T4 vs. T1 + T2)
AJCC nodes pathologic pN (NO vs. N1+N2+N3)
AJCC pathologic tumor stage (S1+S2 vs. S3+S4)
EGFR mutation status (yes vs. no)

EML4 ALK translocation status (yes vs. no)
Tobacco smoking history (yes vs. no)

New tumor event dx indicator (yes vs. no)

Down-regulated Up-regulated
NA MEG3
NA NA
NA NA
NA NA
NA MEG3, MIAT
NA NA
NA NA
NA NA
NA MEG3
NA NA
NA MIR4697HG

Functional Enrichment Analysis

Functional enrichment analysis, including Kyo-
to Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) Biological Pro-
cesses term, was performed for the genes from
the regulatory network with DAVID (Database
for Annotation, Visualization and Integration
Discovery, https:/david.ncifcrf.gov/)’®. p-value <
0.05 was set as the threshold.

Regulatory Modules

IncRNAs and directly connected miRNAs, as
well as mRNAs directly linked to the miRNAs
constituted a regulatory module. The modules
were identified by Cytoscape software (http:/
cytoscape.github.io/).

Results

Pre-treated Data

RNA-seq data contained 575 samples and
20,532 RNAs. GA miRNASeq data included
504 samples while HiSeq miRNASeq contai-
ned 63 samples. Both datasets detected 1,046
miRNAs. To ensure the reliability of the rese-
arch, a total of 532 matched RNA-seq data and
miRNA-seq were selected out. Subsequently,
two distant metastatic samples and 4 repeated
samples were removed, ultimately leading to
507 LUAD and 19 normal samples obtained
for the following analysis.

Since they were already normalized by TCGA,
no further normalization process was applied to
these data. Finally, a total of 13,863 RNA and 286
miRNAs were acquired. Among the 13,863 RNA
transcripts, 13,299 and 202 were identified as pro-
tein-coding genes and long non-coding genes, re-

spectively. These 13,501 genes were used to con-
struct the miRNA-IncRNA-mRNA network.

Key DELs

A total of 57 DELs and 118 DEMs were iden-
tified in LUAD samples compared with normal
samples (Table I). Three DELSs, including mater-
nally expressed 3 (MEG3), myocardial infarction
associated transcript (MIAT) and MIR4697HG,
were significantly associated with clinical fea-
tures. MEG3 was significantly up-regulated in
patients with the male sex, advanced T category
(T3 + T4), and EML4-ALK translocation. The
expression of MIAT was higher in patients with
advanced T category (T3 + T4). MIR4697HG was
expressed at higher levels in the relapsed patients.

Univariate Cox regression was performed to
identify prognostic IncRNAs from the 202 DELs.
A total of 34 DELs were shown to be significant-
ly associated with survival time, in which 9 In-
cRNAs (LINCO00115, LINCO00265, LINCO01001,
LINC01002, MIR22HG, NFYC—-ASI, SNHGI0,
THUMPD3-AS1 and TMPO—-AS1) were diffe-
rentially expressed (Table 11, Figure 1).

Regulatory Network

A total of 1,631 miRNA-IncRNA interactions
were obtained from miRode and 372 interactions
were acquired from starBase v2.0. These two
groups of interactions were combined and 1,955
miRNA-IncRNA interactions were obtained.
DEMs were mapped into the interactions and
778 LUAD specific miRNA-IncRNA interactions
were revealed.

A total of 11,576 miRNA-mRNA interactions
were collected from miRTarBase and DEMs were
then mapped, resulting in 2,833 interactions.
Combined with miRNA-IncRNA, miRNA-mR-
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Table Il. Prognostic IncRNAs differentially expressed in lung adenocarcinoma.

IncRNA

p-value

(Cox p-value)

Up- or
down-regulated

change

Fold p-value

(dif-exp)

LINCO00115
LINCO00265
LINCO01001
LINC01002
MIR22HG
NFYC-AS1
SNHG10
THUMPD3—-ASI
TMPO—-ASI1

0.0257
0.0476
0.0169
0.0393
0.0406
0.0086
0.0122
0.0282
0.0140

Up
Up
Up
Up
Down
Up
Up
Up
Up

3.55
2.68
233
2.27
0.35
2.75
2.12
222
2.67

2.74E-31

1.67E-11
1.33E-10
4.42E-09
2.23E-04
9.97E-16
6.18E-11

5.24E-18
2.97E-29

Overall survival(%)

Overall survival(%)

Overall survival(%)

LINC00115 p=0.026
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Figure 1. Kaplan-Meier survival curves for nine IncRNAs.
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Figure 2. miRNAs-IncRNAs-mRNAs network of lung adenocarcinoma.

NA interactions, 389 miRNA-target genes were
screened out, including 61 miRNA-IncRNA in-
teractions and 304 miRNA-mRNA interactions.
The regulatory network was then visualized with
Cytoscape (Figure 2).

Functional enrichment analysis revealed that the
genes in the regulatory network may play important
roles in LUAD by involving in 642 significant GO
terms (Table III) and 44 KEGG pathways (Table
IV), such as pathways in cancer (hsa05200) and
MAPK signaling pathway (hsa04010).

Regulatory Modules

Nineteen IncRNA-miRNA-mRNA  regulatory
modules, including IncRNA MEG3, MIAT, PVT],
DGCRS, DLEU2, FBXLI9-AS1, FLVCRI-ASI,

GASS, H19, KCNQIOTI1, LINCO00115, LINCO00152,
LINCO00174, LINC00341, MCM3AP-AS1, SNHGI,
SNHG3 and SHGI0, were identified from the network.
Among them, both MEG3 (Figure 3) and MIAT
(Figure 4) may exert their roles in LUAD by inte-
ractions with miR-106 which then regulated the target
mRNA MAPK9 (mitogen-activated protein kinase
9). LINCOO0115 might function in LUAD through in-
teraction with miR-7 which then regulated the target
mRNA FGF?2 (fibroblast growth factor 2) (Figure 5).

Discussion

By constructing the miRNA-IncRNA-mRNA
network, our findings indicate that MEG3 and

2289
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Figure 3. The regulatory module of MEG3.

MIAT, tumor proliferation related IncRNAs, may
play important roles in the development of LUAD
by interactions with hsa-mir-106, which then re-
gulated the MAPKOY to involve in MAPK signa-
ling pathways. LINC00115 might be a prognosis
biomarker in LUAD through interactions with
hsa-mir-7 which then regulated FGF2 to partici-
pate in pathways in cancer.

Increasing evidence has demonstrated that MEG3
acts as a tumor suppressor gene to inhibit tumor cell
proliferation and induce apoptosis. Down-regulation
of MEGS3 contributes to chemotherapy resistance and
is associated with poor prognosis'™. Further fun-
ction and molecular mechanism study indicate that
MEG3 may function as a ceRNA to bind with miR-
181s and prevent the inhibition effect of miR-181s for
Bcl-2, ultimately leading to the up-regulation of Bcl-2

and subsequent suppressing gastric carcinogenesis?'.
Similarly, Zhang et al** also find that over-expression
of MEG3 reduces the level of miR-21-5p expression,
causing decreased proliferation and increased apop-
tosis in cervical cancer cells. However, in this study,
we observed a significantly up-regulated expression
of MEG3 in LUAD, indicating its carcinogenic role.
Although this conclusion still needs further experi-
mental confirmation, we believe it is possible because
we predict that MEG3, as a ceRNA, may down-regu-
late miR-106 and then up-regulate MAPK9 to pro-
mote the development of lung cancer, while the same
expression trends of hsa-mir-106 and MAPK9 has
been proved in several cancers. For example, Ni et al*
report that miR-106b can be markedly down-regula-
ted during breast cancer bone metastasis. The lower
expression of miR-106b leads to the abundant accu-
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mulation of MMP2, which then activates the ERK
signaling cascade and adjusts the bone microenviron-
ment to favor osteoclastogenesis and bone metasta-
sis. Zheng et al* also show down-regulation of hsa-
mir-106 induces epithelial-mesenchymal transition
which confers cells migratory and invasive proper-
ties. As a kinase, MAPKOY fulfills its purpose by pho-
sphorylating diverse substrates, such as c-Jun which
has been considered as a proto-oncogene to promote
cancer cells proliferation and migration®. Targeted
inhibition of INK2/ c-Jun signaling pathway increa-
ses the sensitivity to chemotherapeutic drugs and hei-
ghtens cell apoptosis, achieving the therapeutic aim
for colorectal cancer cells™.

MIAT is a IncRNA that was initially identified to
be associated with myocardial infarction®’, but recent
studies have implicated that MIAT is also involved in
paranoid schizophrenia®, diabetes-related diseases®-*’
and cancer’2. IncRNA MIAT is shown to be highly
expressed in diabetic retinas and endothelial cells cul-
tured in high glucose medium. Silencing of MIAT
significantly inhibits endothelial cell proliferation, mi-
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gration and ameliorates diabetes-induced retinal mi-
crovascular dysfunction®, indicating a cancer-promo-
ting gene. This hypothesis has been demonstrated by
several studies®* to screen IncRNA associated with
cancer pathogenesis, in which MIAT is highly upre-
gulated. However, the expression and mechanism of
MIAT involved in lung cancer remain unclear. As re-
ported by Yan et al” we predicted MIAT may function
as a competing endogenous RNA to form a feedback
loop with MAPK9 and miR-106 to regulate prolifera-
tion, invasion and migration of lung cancer cells, whi-
ch, to our knowledge, has not been reported and needs
further confirmation.

LINCO00115 is a IncRNA fewly reported,
except one study of Zhang et al** which revealed
down-regulated LINCOO0115 may be specific for
lung squamous carcinoma (SCC). However, in
this study, we found LINCO00115 was up-regulated
in LUAD (fold change, 3.55; p-value, 2.74E-31).
This finding illustrates LINC00115 seem to be a
potential biomarker to distinguish LUAD from
SCC. However, the expression and mechanism
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Figure 4. The regulatory module of MIAT.
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Figure 5. The regulatory module of LINC00115.

of MIAT involved in lung cancer remain uncle-
ar. In the present study, we supposed LINCO00115
might participate in LUAD through competi-
tive interactions with miR-7, leading to the low
expression of hsa-mir-7 followed by up-regula-
ting FGF2. A large amount of research has do-
cumented that miR-7 is down-regulated in cancer
specimens and cell lines. miR-7 overexpression
inhibited cell proliferation, invasion and metasta-
sis, but induced cell apoptosis, in which epider-
mal growth factor receptor (EGFR) expression
suppression mechanism was involved®**. Similar
to the EGFR growth factor, FGFR also promotes
cell malignant transformation after combination
with its ligand FGF2*. Thus, FGF2 concentration
is commonly elevated in cancer compared with
control, including lung cancer. Patients with hi-
gher FGF-2 level exhibited significantly shorter
survival than patients with low FGF-2 (7.5 mon-
ths vs. 16 months, p=0.034)*®. However, the in-
vestigation of the regulatory relationship among
LINCO00115, FGF2 and miR-7 remains necessary.

Conclusions

We have identified several key IncRNAs
(MEG3, MIAT, LINCO00115) associated with
LUAD and disclosed they exert important roles
in carcinogenesis as ceRNAs for regulation of
miRNA-mRNA network. Our findings may pro-
pose several new prognostic markers as well as
therapeutic targets for LUAD.
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