Phenylalanine Breath Test

Phenylalanine participates in a number of metabolic pathways, the major one being irreversible hydroxylation to tyrosine by phenylalanine hydroxylase in the liver. Three other pathways of phenylalanine metabolism, normally of minor quantitative importance, are transamination to phenylpyruvic acid, decarboxylation to form β-phenylethylamine, and acetylation of the amino group. In phenylalanine metabolism, the hydroxylation of phenylalanine to tyrosine is rate-limiting, so that the 13C-PheBT may allow estimation of the in vivo rate of phenylalanine hydroxylation. Tyrosine may be hydroxylated to form dihydroxyphenylalanine (DOPA), iodinated to form triiodothyronine or decarboxylated to form tyramine. The major metabolic pathway for tyrosine, however, is transamination to p-hydroxyphenylpyruvic acid. Most p-hydroxyphenylpyruvic acid is converted to homogentisic acid and, at this step, the label of L-[1-13C]phenylalanine and L-[1-13C]tyrosine is released as 13CO2. In tyrosine metabolism, the transamination of tyrosine to p-hydroxyphenylpyruvic acid is rate-limiting, and about 99% of the daily degradation of tyrosine normally flows through p-hydroxyphenylpyruvic acid to homogentisic acid. Therefore, 13C-TyrBT may allow estimation of the in vivo rate of tyrosine transamination. Both phenylalanine hydroxylation and tyrosine transamination take place within the liver and are significantly suppressed in patients with liver dysfunction. Indeed, several studies showed that liver disease is commonly associated with abnormal elevations of the plasma concentrations of phenylalanine and tyrosine and abnormally low breath excretion of 13CO2 after oral administration of either L-[1-13C]phenylalanine or L-[1-13C]tyrosine.

The clinical usefulness of 13C-PheBT (or 13C-TyrBT) has been explored in several studies (Table I). Burke et al. first reported that 13C-PheBT results are correlated with scores of the Child Pugh classification, which is widely accepted as a predictor of the sever-
ity of liver disease. The 13C-PheBT is sensitive not only to assess the hepatocyte functional reserve in patients with liver disease but also to predict postoperative complications in patients undergoing hepatectomy. Moreover, the test is able to monitor liver function after partial hepatectomy in rats and might be proposed as a dynamic marker of hepatic regeneration. Unfortunately, the 13C-PheBT is unable to distinguish between patients with Child-Pugh A cirrhosis and patients with chronic hepatitis C thus not allowing a non invasive measure of the degree of hepatic fibrosis. Finally, an interesting application of 13C-PheBT could be the identification of patients without liver disease affected by phenylketonuria (PKU). In a very old study, the PheBT was able to discriminate between normals and PKU heterozygotes and between normals and classic phenylketonurics with a classification error rate comparable to the gold standard test (i.e.: the fasting serum L-phenylalanine over L-tyrosine ratio). Some concern exists, however, in severe liver failure where phenylalanine hydroxylase is deficient and phenylalanine is converted into tyramine and octopamine by alternative synthetic pathways. These compounds are false neurotransmitters and might cause or worsen hepatic encephalopathy. However, so far no mental deterioration in cirrhotic patients has been ever reported after oral administration of L-[1-13C]phenylalanine, at least at the usual single dose (100 mg) used in breath testing.

Galactose Breath Test

Galactose is mainly metabolized in humans in the liver, the rate limiting step being the galactose kinase, an enzyme located in the cytosol of hepatocytes. The sinusoidal membrane of the hepatocyte has a high extraction capacity for this sugar: when galactose is given at low dose, its hepatic metabolism depends mainly on the hepatic blood flow, and thus large doses are needed to saturate the metabolic pathway and give relevant information on liver function mass.

The advantages of the PheBT (or TyrBT) over the "classic" liver BTs exploring the hepatocyte microsomal function (such as aminopyrine, phenacetin, caffeine, and methacetin BTs) are remarkable. First, the two BTs are not affected by enzymatic induction due to drugs (cimetidine, erythromycin, rifampicin, phenobarbital, etc) which may interfere with the results of the classic "microsomal BTs". Secondly, no side effects have been ever reported with the use of phenylalanine or tyrosine (in U.S. the aminopyrine BT is not currently approved by the FDA due to the potential risk of fatal agranulocytosis).

Table I. Risk factors for chronic viral hepatitis.

<table>
<thead>
<tr>
<th>Application</th>
<th>Species</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-Phenylalanine-BT</td>
<td>Homo s</td>
<td>3</td>
</tr>
<tr>
<td>Prediction of the severity of liver cirrhosis (correlation with Child score)</td>
<td>Homo s</td>
<td>4</td>
</tr>
<tr>
<td>Prediction of postoperative complications in patients undergoing hepatectomy</td>
<td>Homo s</td>
<td>5</td>
</tr>
<tr>
<td>Monitoring liver function after partial hepatectomy (regeneration marker)</td>
<td>Homo s</td>
<td>9</td>
</tr>
<tr>
<td>Identification of patients with phenylketonuria</td>
<td>Homo s</td>
<td>9</td>
</tr>
<tr>
<td>13C-Galactose-BT</td>
<td>Homo s</td>
<td>13</td>
</tr>
<tr>
<td>Prediction of the severity of liver cirrhosis (correlation with Child score)</td>
<td>Homo s</td>
<td>14</td>
</tr>
<tr>
<td>Assessment of liver fibrosis in patients with chronic hepatitis C</td>
<td>Homo s</td>
<td>16</td>
</tr>
<tr>
<td>Monitoring liver function after acute ethanol administration (?)</td>
<td>Homo s</td>
<td>17</td>
</tr>
<tr>
<td>Identification of patients with galactosemia</td>
<td>Homo s</td>
<td>17</td>
</tr>
</tbody>
</table>
nostic factor in the follow-up of patients with chronic hepatitis C.

Before applying this test to patients with liver diseases, theoretical limitations of the test must be kept in mind. For example, ethanol can interfere with the galactose metabolism, through inhibition of the epimerase transforming galactose-1-P into glucose15. In rats, Mion et al. have shown that acute ethanol administration does significantly decrease 13CO\textsubscript{2} production from 13C-galactose16. Diabetes may also interfere with 13C-GBT, especially when hyperglycemia is present: in this case, 13C-glucose produced from 13C-galactose is diluted in the enlarged glucose pool, leading to a decreased 13CO\textsubscript{2} production. When using 13C-GBT in diabetic patients, it is thus of importance to take into account the serum level of glucose when 13C-GBT is performed to obtain relevant information on liver function.

Finally, an interesting application of 13C-GBT is the identification of patients with galactosmia, a rare inborn error of the metabolism of galactose due to deficiency or absence of galactose-1-phosphate uridylyltransferase (GALT). Berry et al. showed that 13C-GBT distinguishes among several GALT genotypes and may evaluate the extent of impaired galactose metabolism in patients with different GALT mutations17. It may be useful in establishing whether a patient with GALT mutation is capable of manifesting disease or not17.

The advantages of 13C-GBT over the "classic" liver BTs exploring the hepatocyte microsomal function are the same as reported for the 13C-PheBT. However, because of the high cost of labeled substrate, the 13C-GBT is very expensive, thus limiting its applicability to the clinical daily practice.

References

